A TOASTER WITH A WORLD WIDE WEB INTERFACE

By

NICHOLAS RYAN

Department of Electrical and Computer Engineering,

University of Queensland.

Submitted for the degree of
Bachelor of Engineering (Honours)

in the division of Computer Systems Engineering

October 1997.

20 October, 1997

The Dean
School of Engineering

University of Queensle

St. Lucia, Q 4072

Dear Professor Simmons,

In accordance with the requirements of the degree of Bachelor of Engineering
(Honours) in the division of Computer Systems, I present the following thesis entitled
“A Toaster with a World Wide Web Interface”. This work was performed under the
supervision of Mr. Gordon Wyeth.

I declare that the work submitted in this thesis is my own, except as acknowledged in
the text and footnotes, and has not been previously submitted for a degree at the

University of Queensland or any other institution.

Yours faithfully,

NICHOLAS RYAN

Nick Ryan

ACKNOWLEDGMENTS

Thanks to my supervisor Mr. Gordon Wyeth for excellent supervision and guidance.
Thanks also to Elizabeth and my family for their support and encouragement over the

last year.

Much of the code in this thesis is based on the XINU operating system developed by

Douglas Comer.

iii

ABSTRACT

The use and popularity of the World Wide Web and the new generation of powerful
embedded processors together have created the rapidly developing technology of
hand-held Web browsers. This thesis uses much of this existing technology in
producing a device based on a cutting edge concept — an embedded Web server. Such
a device is implemented using an embedded processor, memory, an Ethernet
controller and software consisting of an Operating System and a Network Protocol
suite. An appliance incorporating this system is able to be connected to, controlled
and monitored from anywhere on the globally connected World Wide Web. For
demonstration purposes, the developed system is interfaced (rather than embedded) to
a toaster. By employing new technology and popular protocols and architectures, the
Web server developed in this thesis guarantees ease of use, flexibility and widespread

compatibility.

This document outlines in Chapter 1 the motivation for and specific goals of the
thesis. An investigation of the background concepts and technologies associated with
the project appears in Chapter 2. The development and implementation of the
necessary hardware and software is examined in Chapter 3 and Chapter 4
respectively. The progress achieved, future work required and system operation are
outlined in Chapter 5. Chapter 6 contains the conclusions drawn from the progress

achieved.

TABLE OF CONTENTS

ACKNOWEEDGMENTS oo st iii
ABSTRACT suuisisvissvsscomvininiivisnsasssissssiveiisiesssssessss i sssissnsirss s i sesimirs s siviossvs iv
TABLE OF CONTENTS........... “V
LIST OF FIGURES :oivsanviiisimiossiaiaiomiisammnsasasssissbssnsasasasetinns vi
LIST OF TABLES vii
CODE LISTINGS ...uoiiitiiininiiissisissisississssisssssssisssasssss viii
1.0 OVERVIEWuiiiiiiiinicinicsisissesisissesissessesssssssessssssessessessssesssssssssesssssssessassessssesessessesessesessessssses 1
121 IR OMNCHION usivviucisissssminsssissisossisssssssssnonissssnmnavonsasssnssnsassnnssasensesssssssssess ssessstssnsessessssssssassassesssssss 1
1.2 Motivation. iiasussesasensesasRsssssRsRse RS s s s s ees s st st ntenasaeetensensanaanaanteatRRSRaTERORRLSAO AR ISANERLSS 2
L3 ADPPTOACK: isisssiseusissiiisusesinsisissiassesssssssesmssinssssssssasnesssnssessassasasassassasases 2
1.4 Specific Goals R T SR Ui S A AR AP sh v aa e i rasanssnnsnnsnsnssnnennsnnassnssssssssssessessnsssess 4
2.0 REVIEW OF RELATED TECHNOLOGY 5
2.1 COMORPLS soruauussusuaiansusssssosssssssssnssnsssssisssssisss sousssassiy o assssms s R a oS es e bas s ot raas vanves 5
2.2 T ATAWATC ssvssssvnssssssninssssssassssssusnsssssssssssossssoevissssauassnsossssdssssosssuiassss s ussvosvavsavsssusstsnsuossussnsetssass 8
2 T L 2 T — 13
3.0. HARDWARE IMPLEMENTATION.ssiisessssssssiunssesssssussssssssssosssssssssssssssosssrsssassssvsssosssssaiosaasas 19
3.1 MiCrOProOCeSSOr ..cvuiiruerussesassessessssassasassassans 19
3.2 IVICIONY scssesscsssssosssvssassssssssssussssrsorsssssesisns siinssssnsinssnssnsiosssssasssssnsessiusssssnsensposssnssssasoisasss 20
3.3 Ethernet:Controller . iississosssisssvisismsissssisssisissississsessssisssssssssssssisisssssssssssssssissini 24
3.4 Appliance Interface . sssssissssssssessrsssnssissssanisssssississisnssissessussssssississessssssssssssissssiasossssvsmsssasvaiss 32
4.0. SOETWARE IMPLEMENTATION .vcisissuunsssssosnissssssssssossssssissssssissssissssosisssiasssassstsiseios 34
4.1 System InitialiSAtioN ..icssissosisnssinsansisissosssssassssssssssossinsisssnisnsssisssssmanssnsvsossssisssssseisossidissssnonsis 34
4.2 OPeratilg SYSUeIM v vscnsssisisssssvsnssssossnsorsanisssvnsssonssssississssisssssnsissss s iassmises ssamisssinsossssivss ssiasuins 36
4.3 DEVICE IIEIVEE vuecacronsesssestumssoonassaasrsssnsnsnssssesivinsassssssnsusssinssssssssiusssnsss oss soosissssssuavaRRRRRBRISSTEREREOUARRRS 43
4.4 Network Protocol StACK:....viissiasisssuassssisssssssssvsisssssssosisssisissssssssassssisssiisossiiaasssiovsss 44
45 APPHCAtiON LAY OR .o cccsesssiossassusnsassussonssssovssisssssssssssssssnsassssssissssssssiass s samassavnsssissmtaisasinssavesss 47
5.0 SYSTEM OPERATION........ 48
DL SEATIST 1 onsenenssnsessassasassnssnsussssansnsassssssasssannssssasssssndsnsnnshabisssssssnsysssssssssseessasssuesisssssenssoniseuss st asasvssss 48
2 VUSATE wuvususussuessssasns s siiuiasess o asssos e s suaiosTinssviiiasiinsmnssinasnonassasnsssonsonsassnsassne .48
6.0 CONCLUSTON sssssssssssseins s s ssts s shms o0 s iiss s is o iiiieTasinusasnsmarssnsassasesassnsessssssnsss 50
L 0 11) T 50
0.2 FUIUTE ISSUCS sussscaissssusssnsvisissmsnssmssismsssomsatesssssmsesssvissasionsasssnsinies 50
APPENDIX A Circuit'S ChemIaties s sisssssssiissssisisissssssssssisasssssssniosssvsaissssvssssssssssssssssssassavsinssosantes 53
APPENDIX B : Timing Diagramscicismisisssssssssossssassissisisnisssonionssssssssossssssssssssissssssssssassosonion 57
APPENDIX.C 5 PCBILAYOUL.c.cissssssssssisonsissssasssissssisasaississsssssssnssssasssssssassssssssssssssssssssssissiussusmemsssissss 64
APPENDIX D2 Bill;0of VIALeTIAlS:...cnmussnionsnsssussssssississassssssvsnssnorsssissvsrvssissasssssissssssisnssssssssassassaisssvssivs 65
APPENDIX E : Software Hierarchyc.cocceceecerrecrenrenenessessensessessansssssssssssssssssssssssessessesns ... 66
REFERENCES.....icciiiiiuninninnissisnsnnsnssnsnismssmsmmmnimiiniinisssstsensssssssssssssssssssssasssssssssssssesssssssse 67

LIST OF FIGURES

FIGURE 1 : Simplified System Block Diagram........coeveveninenninisissininiii, 3
FIGURE 2: Apple Newton MessagePad 2000..........ccccevererinnnnsnnnnesesssssssssssssnssssssssisssssssssssssssns 7
FIGURE 3: Advertisement for Hitachi SuperH processors. (WIRED, March 1997. Page 115).....9
FIGURE 4: Pinout for 30 pin DRAM SIMM [26].....ccccceverunrunrerennsnnsnsnsssssssssssssssassssassasssssnss .10
FIGURE 5: Manchester encoding [23, P.3-16]. c.cccceveniininninninnnnnnnnnnenenenessssiismmne. 11
FIGURE 6: Standard IEEE 802.3 Ethernet Packet [5, p.20] ... - 12
FIGURE 7: Open Systems Interconnection (OSI) model [25, p.174]. ccceveruiriniiinniesnsessnsnssnsnsiesasans 15
FIGURE 8: Layering used in the TCP/IP protocol suite [25, p.174]. coceverenennieninsincsinsssnsscsnscnnes 15
FIGURE 9: Complete system block diagram.cccevveiieeinenininineninnninnisnisnesninmimsi. 19
FIGURE 10: System Memory IMap.ccccvernsessnsensnssssssssssssssssssesssssssssessssssssssssssssssssssssssssssssssnes 24
FIGURE 11: Bus Master Architecture [27, P.4]...cccucneinennensnnnnnninninniininimnmisse. 28
FIGURE 12: I/O Mapped Slave Architecture [27, p.3]. ccccocverveenenneninnnnenennensnnensnenanes 29
FIGURE 13: Photograph of the completed thesis board.cccouiienvennnnninninnnninnnnn. 31
FIGURE 14: Interfacing to the t0aster.....c.cuuieiieninnininnininninininniiiiiienssnsnsssssssessssesn, 32
FIGURE 15: Photograph of the complete thesis Project. ..o, 33
FIGURE 16: Process State DIa@ram.ccocceeiveessnessnissneissnnssnnisnsinnisssinnesssessnsssesnsesnesssssssssenes 38
FIGURE 17: The Future? (PC Magazine, 7 January 1997. Page 392)......cccceeerrunrnnsncsnssncsnssncsnnnnans 52

vi

LIST OF TABLES

TABLE 1: Page 0 and 1 DP83902A Control Registers [16, pp.24..25] c.ccccecsiveuscusnnrunes 26
TABLE 2: Pin Function Controller Configuration.......cucvieiiniinnnnnininni. 34
TABLE 3: Bus State Controller Configuration.... - .. 35
TABLE 4: Interrupt Controller Configuration.......cuvvieneneiennnninnnni. 35
TABLE 5: Integrated Timer Pulse Unit Configuration 36

vii

CODE LISTINGS

LISTING 1: Assembler code produced by compiler.....ccceveveverennrsenecsnsannes

LISTING 2: Assembler code with required changes.
LISTING 3: SR.CMD linker command file......c.ccceecrerunnee.

viii

w39

39
40

1.0 OVERVIEW

1.0 OVERVIEW

The project that this thesis concerns aims to demonstrate the convergence of two
technologies - the World Wide Web and embedded microprocessors. The goal is to
develop a simple, cost effective, embedded controller with a Web server interface.
This will allow control and communication with the appliance that the controller is
embedded into through a standard Web browser. To allow for such communication
the controller will be connected to a Local Area Network (LAN). For demonstration
purposes the controller will be interfaced to a household toaster. The controller will
produce dynamically created Web pages when connected to from a Web browser.
These pages will provide the user with information such as whether the toast is up or

down as well as allowing control of the heating element.

1.1 Introduction

Use of the Internet has expanded phenomenally in the last few years since the
development of the World Wide Web (WWW or Web) and the introduction and
subsequent success of graphical Web browsers. This success is based on the simple,
intuitive interface and user-level platform independence provided by such browsers.
The popularity of the Web has created a new hardware and software market with great
commercial potential. Software developers are releasing new ‘Web enabled’
application software while hardware and telecommunications manufacturers are
announcing plans for hand-held Web browsers and pay-terminals. These commercial
developments, coupled with the proliferation of PC use around the world and the
forecast convergence of television and computer technology, guarantees that the
popularity and penetration into society of Web technology will undoubtedly continue

and expand.

Embedded microprocessors are another technology that have seen rapidly increasing
use recently. This is due to their continuing reduction in cost and size together with
increased integration and processing power. Embedded microprocessors allow
electronic devices to provide greater functionality and control with an associated cost
overhead that is minimal or more commonly, cheaper than pre-microprocessor
implementations. The extent to which embedded microprocessor power has increased

becomes apparent with the advent of devices that incorporate networking technology

1.0 OVERVIEW

allowing connection to the Internet and World Wide Web. Such devices include hand-
held Web browsers, hand-held computers and networked equipment such as printers,
routers and hubs with Web front-end control [20]. Such devices represent a

convergence of both the Internet and embedded microprocessor technologies.

1.2 Motivation

Besides demonstrating the convergence in technologies mentioned above, there are a
number of other motivations for this project. There will be a number of significant
differences from related previous and current commercial devices. The aim is to
create a relatively simple and cost effective embedded Web server. This will be
achieved by aiming toward a low component count and by providing only simple
appliance interfacing. Such an appliance interface would consist of a number of
parallel I/O pins. This differs from current embedded Web server technology
(discussed in the following chapter) that aims to provide complex interfacing, at an
associated cost, to interface to peripherals such as touch sensitive LCD screens, disk
drives and wireless communication modules. With a simple and cheap
implementation, it is hoped to show the possibility of incorporating such technology

at a low add-on cost into a large array of electronic items.

Having a WWW interface allows global connectivity. This may not be important for a
toaster, but there are many applications in which this could be a great benefit.
Allowing control and monitoring of a device from anywhere in the world presents a
new, previously untapped use for the Internet and World Wide Web. The simple,
intuitive graphical interface that is used to access a globally connected network of
information, may now also be used to control and monitor an appliance located

anywhere on the same globally connected network.

1.3 Approach

A simplified system block diagram in Figure 1 forms the basis for the design and
planning of the embedded Web server. An embedded microprocessor will interface
through a bus to an integrated Network Interface Controller (NIC) as well as some
system RAM and an EPROM containing the system software. The microprocessor
will interface to an electronic appliance through some parallel I/O pins and to the

development computer through a serial port.

1.0 OVERVIEW

Development PC Interface
A

RS-232

Appliance Mi

iz > icroprocessor |« Pl » EPROM
Interface | paraiel 1/0

and PWM

«——» RAM
Ethernet » R
Ethirmit Controller
System Bus

FIGURE 1 : Simplified System Block Diagram.

While the software is being developed, bootstrap code will be required for the
microprocessor that runs when the system is reset. This will provide the capability to
download code under development from the development computer via the serial
interface. This bootstrap code must exist in the non-volatile EPROM seen in Figure 1
so that it is available when the system is reset. Once the software has been developed

it may be transferred to an EPROM thus replacing the bootstrap code.

An Operating System (OS) kernel will be written for the processor that will provide
simple multi-tasking, interrupt processing, semaphores and process communication
capabilities. Due to the specific nature of the project, the OS code will only need to
provide enough features to support the networking software and a device driver that
will be written to allow control and configuration of the NIC. The device driver will
provide a simple interface to higher level software. The code for interfacing to the
electrical appliance is to be written into the higher level software as its complexity

will be minimal.

The networking software will be based on the Transmission Control Protocol /

Internet Protocol (TCP/IP) software that is used on the Internet. (TCP/IP will be

1.0 OVERVIEW

discussed in the next chapter.) An Application Program Interface (API) will need to
be written. The API provides an interface between the networking software and the
high level application software [25, p.258]. The HyperText Transfer Protocol (HTTP)
is an application level protocol that will be used by an HTTP server application [7].
This is the protocol used by the WWW and will allow the system to act as a Web
server. As this system has no disk and no virtual file system is to be implemented, the
Hypertext Markup Language (HTML) pages use by the WWW will be created and

served dynamically.

1.4 Specific Goals

The specific goal of this thesis project is to develop a simple, cost effective,
embedded controller with a Web server interface. The basic componenets of the
system will be an embedded processor, memory, an Ethernet controller and software
consisting of an Operating System and a Network Protocol suite. For demonstration
purposes, the developed system will be interfaced to a toaster. Such a system will then
enable a device to be controlled by a simple graphical interface viewed on any Web

browser running on the same network.

The use of the WWW and the underlying Internet has largely been dominated by
information transfer and communication. Few examples exist of the WWW being
used as an interface to the real world to control, change or manipulate physical
objects. Those that do exist are largely based around a computer connected to a
network and a separate real world interface. The creation of an embedded Web Server
to interface to electronic devices will show that the possible uses of the Internet

encompass far more than just information exchange.

2.0 REVIEW OF RELATED TECHNOLOGY

2.0 REVIEW OF RELATED TECHNOLOGY

The concepts related to this thesis and the technologies it uses were thoroughly
researched before design of the system began. This allowed sensible design decisions
and a clarification of the system requirements. The research results are outlined

below.

2.1 Concepts

The concept of the embedded processor lies at the heart of this project. Initially,
embedded processors were used as stand-alone devices. However, as the use and
complexity of electronic systems increased, often a number of processors were used to
control separate sub-systems. In order to reduce replication, wiring overhead and
complexity and increase sub-system coordination, networked systems were
developed. An example of such an evolution can be seen in the automobile industry
where the Controller Area Network [22] protocol was introduced by the Robert Bosch
company due to the increasing number of microprocessor controlled sub-systems in
automobiles. This standard provides a serial network that allows communication
between compatible components such as microprocessor based devices, actuators and
sensors, at data rates of up to 1Mbits per second. In 1995 there were 3 million CAN
bus systems in vehicles and twice as many in non-automotive industrial applications.
Furthermore, the high volume domestic appliance market is expected to increase these

figures.

The global communication possibilities provided by this thesis project rely heavily on
the pre-existing global inter-network of computers called the ‘Internet’. The roots of
the Internet lie in the development of an experimental network system in the 1960’s
and 1970’s by the Advanced Research Projects Agency (ARPA) [25, p.198]. The
result was the ARPANET which linked military, university and research sites to aid in
computer science and military research. During the 1980’s the ARPANET was
divided so that the ARPANET was separated from the MILNET which was for
military use only. It was during this time that the TCP/IP protocol suite (described
below) was introduced as a standard. The ARPANET together with the NSFNET,
which was created in 1987 to link a number of supercomputer centres, were the basis

for what is now commonly known as the Internet. The research results from the

2.0 REVIEW OF RELATED TECHNOLOGY

ARPANET project allowed many networks to be incorporated into a single large

interconnected network.

Using this technology, the World Wide Web was developed as an application layer
protocol that runs on top of the TCP/IP protocol. Its development began in 1989 when
its project proposal was written by researchers at the European Laboratory for Particle
Physics (CERN) [28]. The first World Wide Web prototype and associated text mode
browser were then developed in 1990. This was followed by a public release of the
text mode browser in 1992. The popularity of the World Wide Web increased
dramatically after September 1993 when the National Centre for Supercomputing
Applications (NCSA) released it’s Mosaic graphical Web browser for all major
computer platforms. Following this, Web browser technology grew quickly as major

software companies competed for the potential gains of this technology.

The formal release of SUN’s JAVA programming language and compilers in May
1995 signalled a major technological advance as it allowed programs that were
compiled into machine independent bytecode to be downloaded and run through a
user’s Web browser [18]. Today, the latest advance is that of ‘push’ technology in
which information is pushed to a user’s Web browser automatically, rather than being
retrieved by the user. With such advances in a very small number of years it is certain
that the World Wide Web and its associated technologies will continue to become

both more complex and more powerful in the future.

Unrelated, until recently, the development of embedded microprocessing technology
has been advancing at the same rate as that of the Internet. For several years
embedded microprocessors have been used in non-industrial products such as
electronic diaries and electronic organisers. The capabilities and uses of such devices
were traditionally limited due to the lack of underlying computing power, limited
communications support and small storage space. Communication, if any, usually
involved storing and retrieving data onto a desktop computer to save space on the
organiser. With the popularity and capabilities of the WWW described earlier, the
benefits of implementing TCP/IP networking support into such devices became
obvious. Unfortunately, the powerful and flexible TCP/IP protocol is complex and

requires relatively large amounts of computing resources. It is only recently that

2.0 REVIEW OF RELATED TECHNOLOGY

embedded microprocessor power has been able to support the implementation of the
TCP/IP protocol.

The latest generation of electronic organisers, now termed Personal Data Assistants
(PDAs) provide TCP/IP networking together with features such as LCD touch
screens, wireless communications and large memory capacity (in both RAM and
ROM). An example of such a device is the well known Apple Newton [1]. The latest
model, the MessagePad 2000 may be seen in Figure 2. It provides handwriting
recognition, modem, fax, e-mail, limited WWW browsing and communication with a
computer through direct or wireless modem, serial or infra-red connections. It also

allows connection to an external keyboard and a variety of printers.

FIGURE 2: Apple Newton MessagePad 2000

Another device based on the technologies mentioned above, but more closely related
to this thesis project was demonstrated by the German based company 3Soft at a
conference in early 1997. A coffee machine had been fitted with 3Soft’s embedded
Web server hardware and software [17]. This allowed Java programs to be
downloaded from the coffee machine and run from a Web browser, enabling control
and monitoring from anywhere on the network. This cutting edge demonstration
represents a shift of focus on the uses of the WWW which this thesis also aims to
demonstrate. Instead of using the WWW to provide a powerful, user-friendly interface
to a globally connected network of information, the aim is to use the same powerful,
user-friendly interface to control and monitor a device located anywhere on the same

globally connected network. This thesis project is based on much of the technology

2.0 REVIEW OF RELATED TECHNOLOGY

used in the PDA style devices described above but it is designed for control through
an indirect networked front-end. As there are no display or large storage space
requirements, it will be possible to create a cheap and simple device that could be
embedded in many and varied electronic products at a minimal additional cost. One
way to minimise cost is to use highly integrated hardware components. The next

section examines the hardware technology with this in mind.

2.2 Hardware

Embedded microprocessors are not only becoming more powerful but are becoming
increasingly integrated. Such integration leads to minimal external components
requirements. This is ideally suited to emerging embedded applications that are
usually characterised by the requirements of low cost, compactness and low power
consumption. Until recently most embedded processors had been based around
relatively simple, low power processor cores such as the IBM compatible XT and AT
processors. However, with more sophisticated manufacturing technology and greater
demand the latest generation embedded processors have been based around more
powerful processor cores. The Hitachi SH7032 embedded processor chosen for this
thesis is an example of such a current generation processor [8, p.2]. It is a high
performance RISC processor that is available in two clock speeds : either a 20 Mhz, 5
volt or 12.5 Mhz, 3.3 volt package. The 20Mhz version has a performance rated at 16
Mips. The SH7032 has a five stage pipeline, 32 bit internal architecture and a 16 bit
external data path. Integrated into this package are 8Kbyte of internal RAM, a bus
state controller that supports direct interfacing to static RAM (SRAM), dynamic RAM
(DRAM) and address / data multiplexed buses, a 4 channel Direct Memory Access
(DMA) controller and an interrupt controller that controls 9 external interrupts, 31
internal interrupts and provides 16 programmable priority levels. Also provided are a
two channel Serial Communications Interface (SCI), a 5 channel 16 bit programmable
timer, an 8 channel A/D converter and 40 parallel I/O pins. As can be seen from
Figure 3, Hitachi is advertising this chip as today’s processor for tomorrow’s

embedded applications.

2.0 REVIEW OF RELATED TECHNOLOGY

)

PARRLESS BATERYACES
FOR VIDEC. VOIS, AND DATA

SINUATOGI ACTIPATION

VOKE AP AKS BEATE WHHTAGKE PUASASA SSEWACE

This Wallet May Not Exist Yet,

But The Microprocessor For 1t Does.

HITACHI

FIGURE 3: Advertisement for Hitachi SuperH processors. (WIRED, March 1997. Page 115)

Memory of some form was required for the system both to store the developed code
and to provide variable space and stack space. DRAM Single Inline Memory Modules
(SIMMs) are widely used in computers today due to their relatively low cost and large
memory sizes. However since the DRAM stores data as capacitive charges, it requires
continual refresh cycles [11, p.812]. This is traditionally the disadvantage of using
such memory as a separate refresh controller must be implemented. Access time to the

DRAM is slower than SRAM as the address input lines are multiplexed [11, p.812].

2.0 REVIEW OF RELATED TECHNOLOGY

As mentioned above, the SH7032 supports direct interfacing to DRAM by providing
multiplexed row and column memory addresses, as well as providing automatic
control and refresh strobes. For this reason a 1IMbyte SIMM is to be used for the main
system memory. The standard 30 pin module SIMM that has now been superseded
will be used due to their relatively low cost. The pinout for a 30 pin SIMM may be
seen in Figure 4. As well as power, data and address pins it is seen that /WE (Write
Enable — active low) is used to specify a read or write cycle. /RAS and /CAS (Row
Address Strobe and Column Address Strobe — active low) are used to both latch the
address lines and to perform refresh of the memory [14]. QP, DP and /CASP are used
in the 9 bit (8 data bits + 1 parity bit) parity SIMMS if parity is supported by the

microprocessor [26].

Pin Function Pin Function
1 Vce 16 DQ4
2 ICAS 17 A8
3 LECECEEEEEEEEEErer e 5 5 DQO 18 A9
4 A0 19 A10
30 pin SIMM configurations: g S1Q1 g? /[?/\?E5
256kbyte x 8 : e . e
) 8 A3 23 DQ6
256kbyte x 9 (parity) 9 GND 24 N/C
1Mbyte x 8 . 10 DQ2 25 DQ7
1Mbyte x 9 (parity) 11 A4 26 QP
4Mbyte x 8) 12 A5 27 /IRAS
4Mbyte x 9 (parity) 13 DQ3 28 ICASP
14 A6 29 DP
15 A7 30 Vce

Note:

QP, /CASP and DP are not connected on all 8 bit modules
A9 is not connected on 256Kbyte modules
A10 is not connected on 256Kbyte and 1Mbyte modules

FIGURE 4: Pinout for 30 pin DRAM SIMM [26].

SRAM will be used to store the code downloaded from the development computer.
This is necessary as the DRAM cannot be used until the processor has been initialised
by the software. As mentioned earlier once the code has been developed it may be

transferred to an EPROM and the SRAM will no longer be required.

A device that is to operate on the Internet must have some form of direct connection
to a Local Area Network (LAN). Ethernet (IEEE 802.3 standard) is one of a number
of protocols that may be used for the physical connection of nodes on a Local Area

Network. Due to its wide use, both throughout the world and within the University of

10

2.0 REVIEW OF RELATED TECHNOLOGY

Queensland engineering department, this protocol will be implemented to allow
connectivity with a large amount of pre-existing networks. Ethernet uses Carrier
Sense and Multiple Access with Collision Detection (CSMA/CD) which means that
all Ethernet transceivers communicate on a single medium, that only one may transmit
at a time, and that all may receive simultaneously [21]. If two transceivers attempt to
transmit at the same time, a transmit collision is detected, and both devices wait a
random period before attempting retransmission. The standard physical connections
used with Ethernet today are either 10Base-2 (Thin coaxial cable or ‘Cheapernet”) or
10Base-T (Universal Twisted Pair). 10Base-2 uses a coaxial cable with BNC
connectors. The nodes on a 10Base-T network are daisy-chained together using ‘T’
junctions and the endpoints of the cable are terminated with an impedance matched
load to stop signal reflections. 10-Base-T uses a twisted pair cable to minimize cross-
talk with modular RJ45 connectors [21]. Nodes on a 10Base-T network are connected
in a star topology with all connections coming from a central hub. An alternative
connection is through an Auxiliary Unit Interface (AUI) which is 15 pin ‘D’ type plug
that has signal as well as power connections. This interface may be connected to

either 10Base-2 or 10Base-T through an appropriate adapter.

The data transmitted over the Ethernet network is Manchester encoded. Manchester
encoding combines a clock signal and Non-Return to Zero (NRZ) serial data into a
signal that may be transmitted on a single pair of wires [23, p.3-16]. This means that a
separate clock signal is not required to be transmitted. Encoding is done by
exclusively-ORing the clock and data. As may be seen in Figure 5 this results in a
zero transition in the middle of every bit signal. Upon reception, the clock and data

may be accurately decoded using a Phase Locked Loop (PLL).

NRZ Data

Manchester l— ' ’
Data =

FIGURE 5: Manchester encoding [23, p.3-16].

11

2.0 REVIEW OF RELATED TECHNOLOGY

To allow for this a Manchester encoded preamble field consisting of 62 alternating 1
and 0 bits is prepended to the actual data packet that is to be transferred. Some of
these are lost during transmission over the network but the remainder allow the

receiving device to achieve bit synchronization.

A standard IEEE 802.3 Ethernet packet may be seen in Figure 6. It consists of the
following fields: preamble, Start of Frame Delimiter (SFD), destination address,
source address, length, data, and Frame Check Sequence (FCS) [5, p.20]. All fields
are of fixed length except for the data field. The 62-bit preamble was described above.
The SFD allows the receiving device to determine byte alignment of the incoming
data. The Preamble, SFD and FCS fields are generated and appended during
transmission. The Preamble and SFD fields are stripped during reception [16, p-12].

PREAMBLE SFD DESTINATION SOURCE LENGTH DATA FCS
62-bit 2-bit 6-byte 6-byte 2-byte 46..1500 4-byte
byte
RECV < — > >
Stripped Transferred
XMIT €— >« —P<¢ >
Appended Transferred Appended

FIGURE 6: Standard IEEE 802.3 Ethernet Packet [5, p.20]

The FCS is passed through to allow for error checking. Every Ethernet controller has
its own unique address which consists of 6 bytes. Each Ethernet controller listens for
incoming packets with a destination address that matches its own physical address. As
well, all controllers listen for the standard broadcast address of "FF-FF-FF-FF-FF-
FF”. Multicast addressing is similar to broadcast addressing but allows the definition
of a subset of all the Ethernet controllers on the network. Thus only Ethernet

controllers programmed to listen to a multicast address will do so.

High component integration has also influenced Ethernet controller hardware
recently. It has allowed major manufacturers to produce chips that require little
external hardware to interface between a processor bus and an external Ethernet
connection. Most Ethernet controller chips are designed to interface to standard PC

buses. The Ethernet controller chosen for this thesis is the National Semiconductor

12

2.0 REVIEW OF RELATED TECHNOLOGY

DP83902. It is available in an 84 pin PLCC package and provides a complete Ethernet
Network Interface Controller (NIC) solution for the popular 10Base-T and 10Base-2
networks [16]. It consists of three main sections which are a Media Access Controller
(MAC), a Manchester Encoder / Decoder (ENDEC) Module and an Auxiliary Unit
Interface (AUI) module. The MAC provides dual 16-bit DMA channels which are
used to transfer packets to and from system and local buffer memory. A 16-byte
internal FIFO is use to compensate for timing differences between the network and
system data rates. These are both controlled by an integrated, intelligent buffer
management system to provide simple and efficient packet transmission and
reception. Automatic filtering and recognition of physical, multicast and broadcast
addresses are provided as well as three network error counters. The ENDEC performs
Manchester encoding of data to be transmitted and Manchester decoding of data
received. If the twisted pair transceiver is used, network collisions are detected and
reported to other modules in the chip. The AUI and 10Base-2 interfaces both rely on
the externally connected transceiver to detect and report collisions. Internal and
external loopback modes are also available to test a number of the functions that the
chip performs. The AUI differentially drives a transmit wire pair and has differential
inputs for receive and collision pairs. This interface is used rather than the direct
10Base-2 or 10Base-T connections provided as it allows connection to either of these

networks through an appropriate adaptor.

2.3 Software

An investigation of software to run on control the hardware chosen above was
performed. As is to be expected, the power of embedded processors will always lag
behind that of desktop computers. As well, data and code storage space is minimal as
most embedded processor devices lack disk drives. Thus code developed for such
embedded processor based devices must be fast, highly efficient and compact. As
mentioned previously, the TCP/IP networking protocol is fairly large and complex
and requires a sophisticated operating system for its operation. The OS must provide
multi-tasking as each layer of the TCP/IP suite runs as a separate process [6, p.7]. Due
to this, process control such as creating, suspending and killing processes must also be
implemented. Inter-process communication is used to allow network packets to be
transferred between layers of the TCP/IP suite while event timers are relied heavily

upon by the TCP layer. Sophisticated memory management is also required to ensure

13

2.0 REVIEW OF RELATED TECHNOLOGY

that one process does not use all the available memory and thus create a deadlock [4,
p.231].

A number of moves towards creating operating systems and networking packages that
will run on limited resources have been made in the last couple of years. A number of
established Operating Systems developed specifically for embedded applications
provide compact and efficient code. However, probably the most publicised example
of an embedded OS would be Windows CE released by Microsoft in November 1997
[3]. This is a scaled down version of the Windows 95 OS and is designed for use in
handheld computing applications. It comes with built in cutdown versions of
Microsoft Word and Excel for Windows. Windows CE is used in the Casiopeia [3], a
handheld computer produced by Casio which is actually based on a more powerful

version of the Hitachi processor used in this thesis.

A better example of compact and efficient software can be seen on a demonstration
disk released early in 1997 by QNX Software Systems. This is a standard 3% inch
floppy disk that requires only a 386 compatible processor, 6Mbyte of RAM and no
hard drive. Once booted from, the disk provides an operating system with a Windows
95 ‘like’ Graphical User Interface (GUI), a WWW browser, a WWW server, a text
editor and a virtual file system. Such a demonstration is encouraging as the resource
requirements will be significantly less for this thesis as no graphical display, file

system or WWW browser are required.

These examples are both commercially developed products. The OS for this thesis is
based on a non-commercial product. XINU is an operating system developed by
Douglas Comer for an operating system design course in the U.S.A. [4]. Because of
this it is readily available, has excellent documentation and a relatively simple source.
It is a simple operating system based on the design of Unix, providing all the features
mentioned above and has full TCP/IP networking support [6]. Significant amounts of
the machine dependent task swapping, interrupt control and memory management will

need to be rewritten for the Hitachi processor.

The networking software required for communicating over the Internet runs on top of

the OS as higher level processes. The diagram in Figure 7 illustrates the 7-layer Open

14

2.0 REVIEW OF RELATED TECHNOLOGY

Systems Interconnection (OSI) model for networking software that the TCP/IP
protocol suite is based upon [25, p.174].

Application

Presentation

Session

Transport

Network

Data Link

Physical

FIGURE 7: Open Systems Interconnection (OSI) model [25, p.174].

Figure 8 shows the simplified layering model used in the TCP/IP protocol suite and its
relationship to the standard OSI model [25, p.199].

. TosrE APPLICATION
er Proc
ser Process ser Process (OSlI Layers 5-7)
Y /Y
TRANSPORT
TCP ubp
(OSI Layer 4)
A /
A /
NETWORK
IP < » ICMP (OSI Layer 3)

DATA-LINK

NIC Device Driver |«—»| ARP (OSI Layer 2)

AN

N

Ry

PHYSICAL
(OSI Layer 1)

Hardware

FIGURE 8: Layering used in the TCP/IP protocol suite [25, p.174].

15

2.0 REVIEW OF RELATED TECHNOLOGY

The physical layer consists of the Ethernet controller and connections discussed
carlier. The data-link layer consists of an Ethernet device driver which will be
specifically written for the DP83902 NIC. A typical NIC device driver consists of
initialisation routine, a send packet routine to either transmit a packet on the Ethernet
or queue it if one is already being sent and an interrupt routine. The interrupt routine
receives packets and transmits any queued packets. It also notifies high level software

of both successful and erroneous transmission and reception of packets L15:p.1].

Apart from the hardware specific Ethernet device driver, the Data-Link layer also
requires implementation of the Address Resolution Protocol (ARP). ARP provides a
mechanism to translate a 4-Byte logical IP addresses into 6-Byte physical Ethernet
addresses so that a packet may be sent to the correct network node [24]. This is
necessary because IP addresses and Ethernet addresses are selected independently and
thus algorithmic translation is impossible. The translation is done only for outgoing IP
packets as this is when an IP header and an Ethernet header are prefixed to the packet
being sent. ARP keeps a mapping table and controls table look-up and maintenance
[6, p.39]. When the ARP table cannot be used to translate an IP address, a request
packet with a broadcast Ethernet address is transmitted on the network. Each ARP
module running on the network receives the message. If the target IP address of the
message matches its own IP address, it sends a response directly to the source
Ethernet address with its own Ethernet address. The ARP protocol also specifies that
the responding module must store the source addresses of the request packet in its
own table [6, p.53]. Packets that are queued while waiting for an address translation

are automatically sent by ARP once the translation response has been received.

The Internet Protocol (IP) is used to implement the Network layer. IP provides an
unreliable delivery of IP packets — it does not guarantee that packets are delivered or
delivered correctly [24]. Reliability must therefore be provided by higher level
protocols. IP is also connectionless meaning that IP datagrams are transmitted
independently and must therefore contain all the information required for delivery
including destination and source IP addresses. An IP message may be forwarded from
one physical network to another by a gateway that it is connected to two physical
networks which has a NIC for each network. This allows the IP layer and its

associated IP addresses to build a single logical network from multiple physical

16

2.0 REVIEW OF RELATED TECHNOLOGY

networks - IP hides the underlying network structure from higher level applications.
This interconnection between physical networks is the source of the term ‘internet’
[24]. IP maintains a routing table which is used to determine how to route packets
around an internet [6, Ch.6]. It provides information such as the shortest route to a
given address and which gateway is connected to which network. IP also provides for
fragmentation and re-assembly of long higher level datagrams into smaller IP packets
[6, Ch.7]. The Internet Control Message Protocol (ICMP) is also implemented in the
Network Layer and allows error messages and routing changes for the IP process to

be transmitted over the network [6, Ch.8].

For this project, as the device will not be acting as a gateway, the IP layer can be
greatly simplified [5, p.96]. A routing table is not required as the destination address
will either be to a node on the local network or a gateway on the local network. As
well, this allows the ICMP process to be simplified so that the only task it performs is
to provide replies when requested [5, p.103]. At this stage of development, a Packet
InterNet Groper (PING) client can be used to send an ICMP echo message request to
a host and wait for a reply [25, Ch.11]. Thus the reachability of the node on the
network and the functioning of the IP and ICMP processes may be tested.

Either the User Datagram Protocol (UDP) or the Transmission Control Protocol
(TCP) may be used to implement the Transport layer [25, p.199]. UDP is simpler to
implement but is not used by the WWW. The more complex TCP provides a
connection-oriented, reliable, full-duplex byte-stream service [13]. Connection-
oriented means that when two applications are communicating using TCP, a logical
connection between them exists. Thus TCP modules hold state information that is
used to define a full-duplex virtual circuit. TCP uses a sliding window system to
guarantee reliability. This means that outgoing data must be acknowledged by the
receiving end within a window size which is specified using the number of
transmitted bytes. As TCP is a byte-stream service: bytes rather than assembled
packets of fixed length are transferred. Each end of the TCP full-duplex, virtual circuit
may exert flow-control to prevent buffer overruns. TCP also implements port numbers
that are specified when establishing a connection. This allows the TCP process to be

multiplexed between a number of client processes on the one system.

17

2.0 REVIEW OF RELATED TECHNOLOGY

An Application Program Interface (API) to the TCP/IP communication protocol
provides an interface to applications for network communication [25, p.258]. The
interface consists of functions providing connection establishment, data transfer and
disconnection by simply specifying connection type, IP addresses and TCP ports. The
TCP/IP protocol suite and the API are to be based on the implementation provided
with the XINU operating system [6, Ch.17].

The HyperText Transfer Protocol (HTTP) is used in the application layer and
communicates with the TCP/IP software through the API described above. This is the
protocol used by the WWW since 1990 [7]. The HTTP protocol is based on a request /
response paradigm in which a client has available a set of methods with which to
indicate the purpose of a server request. It uses Uniform Resource Identifiers (URI) to
identify resources with which the request method is concerned. A client request
consists of a request method, URI, and protocol version, followed by a message
containing request modifiers, client information, and possible body content. A server
response consists of a status line and a message containing server information and
possible body content. HTTP requires a reliable transport mechanism such that is
provided by TCP/IP. The HTTP software needs only to consist of a simple text parser
to handle incoming requests and a text generator to dynamically produce the server

response which will contain an HTML page as the body content.

With research and investigation of all areas of the project completed and the main
system components chosen it was now possible to start developing the system
hardware. The next chapter examines the hardware implementation used for this

system.

18

3.0 HARDWARE lMPLEMEb{Tf\TIOE_

3.0 HARDWARE IMPLEMENTATION

This chapter examines the design of the system hardware. Figure 9 shows a block

diagram of the developed system.

ﬁevelopment PC InterfaceJ
A
RS-232
Appliance | »| Microprocessor [« g o » EPROM
Interface | paraliel 10
Packet < » SRAM
Buffers %
Ethernet DMA i
Ethernet Controller Port
Local Bus System Bus

FIGURE 9: Complete system block diagram.

3.1 Microprocessor

An evaluation board for the SH7032 microprocessor was purchased from Hitachi.
Based on the SH7032, this board consists of an EPROM, RAM, two serial ports, a
reset and a Non-Maskable Interrupt (NMI) pushbutton, a simple power supply and
access to all of the processor pins. The EPROM contains startup code and a serial
communications and debugging package. The RAM consists of two 32Kbyte x 8
SRAMs that can be accessed simultaneously to allow for 16 bit data transfers. The
serial ports consist of two 9 pin male ‘D’ type connectors. One port is used for
communication with the development computer, while the other is available to the
user. The ports are interfaced using a MAX-232 serial transceiver that translates RS-
232 signals to logic levels and vice-versa. The reset pushbutton uses a Dallas
Semiconductor DS1233A reset generator for debouncing and to provide a 350mS
reset signal to the processor. The NMI pushbutton is debounced using two cross-

coupled AND gates and an SR flip-flop.

19

3.0 HARDWARE IMPLEMENTATION

A regulated 5 volt supply is required for the evaluation board. The power smoothing
components on the evaluation board are only sufficient for driving that board and thus
a separate power filter was required for the thesis project board that was to be
constructed. The thesis project board also required a regulated 12 volt supply for
output on the AUL It was decided that the thesis board would be built to the same
dimensions as the evaluation board (Sinch x 5% inch) so that they could be
piggybacked together. The reset signal and all processor signals were connected to the
thesis board through a number of segments of flat ribbon cable and IDC connectors. A
number of parallel I/O pins and a Pulse Width Modulation (PWM) output were made
externally available for interfacing to the toaster (or any appliance) at a later date.
These connections may be seen in the Power Filter and SH7032 Inputs schematic

overpage.

3.2 Memory

The DRAM implementation was the simplest part of the hardware design due to the
SH7032’s direct DRAM support. Address and data lines were connected directly as
well as the refresh control lines and write enable line. Whilst it is possible to use
parity checked DRAM with the SH7032, it is not necessary, and thus the three parity
checking lines QP, /CASP and DP (See Figure 4) were not connected. This decision
allows either a parity or non-parity DRAM SIMM to be used. The addressing of a
DRAM is performed by strobing in the multiplexed row and column addresses by
using the /RAS and /CAS strobe signals. A read or write cycle is performed by
strobing the /RAS signal first with the row address as input, followed by strobing the
JCAS signal with the column address as input. The read or write cycle is determined
by the state of the /W signal. As mentioned earlier, the DRAM requires refreshing. A
row in the RAM is refreshed whenever accessed, so to perform refresh each row in
the RAM must be accessed within the minimum specified time. A 70nS 1Mbyte
DRAM SIMM was used for this thesis. Bits in this DRAM required refresh every
8mS, thus a row refresh was required every 15.6uS (512 rows) [14, p.7-36].

20

3.0 HARDWARE IMPLEMENTATION

¥ , € T 1
unky SPIOYIN HOS SLNdNNHOS\SISHHL'D Sl
L661-P0-0T 2w

14
s

uoISIAY | SqunN

sinduy ZEOLHS PUE SINLY MO u___L

POOHPL 0z 9INn ozsin ozrin 0T £1N rrzin ozin

quol dU01 quot ,._...o_ ..Eo_ ..—:o_

1 T @n% mnnv”T qnollﬂﬁlu me”T Nn% 1€, |~|

a | v1oin o0z 6n 878N TN 0z 9N 0T SN vivn

quot U0t qu0L qU01 qu0t g0l

oﬂv”_m aaoll—-ﬂh.. mnnv"—r R% oNUll——" muo+ .*MNQW”——"
rLEN vizn o 09%6S 1N win win yin

| . oLl EL oLl il

| -
a

arn
$OOHYL
arn oo

4

0STVIL
an

m
%

21

&
sr-aAd er-aAd 1r-aad
“owoa owoa seoar
1 N g N\ 1
z SAV_ ¢ N—Y_1 ¢
—_) S N\ v
VD : | ' N v ;
e = 5] N b
svd 9 N P9 N— 2 puog AL
) L o] § N v & \ﬂ
Cim b Nz 4 v
RIM —s oL 5, N—sv | & ATI+ o
. I il N o R—tv— ! _
—u L Ll N—v— ¢
=] & 1 ma o1 & N—v | & ﬁ
s o N = A N—cv | I sdis gAY o= +
st o - = S R—v— ¢ = w T
— o T o1 ol s = 9 a1
[odu_—— Ul o FEAYAN 1 1 Vi v _ L&
— s 6 |m»+“ 004 g1 — 8 €
< Rva 61 § A AN ol —a z _ ﬂIN
oz L — oz — o 1 |
-+ 1z o BRI AN 1z i x, aor | ol
OHYL od_/| FAV_ =] St QTP slo=—= €0+
30 u s u w o
v — e
¢ — v —n
a [Tl i
L] ood Al
oir W o it o prog oy
161

n

3.0 HARDWARE !MPLEMENTAT!ON

This project uses /CAS-before-/RAS refresh in which /CAS is strobed before /RAS.
This increments an internal counter on the DRAM which generates the row address to
be refreshed [14, p.7-50]. The connections to the DRAM may be seen in the DRAM
and NIC registers schematic overpage. The timing diagrams for a DRAM read cycle,
write cycle and refresh cycle may be seen in Appendix B. The programming of the

DRAM control on the SH7032 will be discussed in the following section.

The two 32Kbyte SRAM devices on the evaluation board were replaced by two
128Kbyte SRAM devices halfway through the project. This was done in anticipation
of a large increase in the prototype code size as the TCP/IP protocols were
implemented [6, p.549]. As discussed earlier however, once the software has been
written and completely tested it may be transferred to EPROM and thus only EPROM
and DRAM would be required.

The SH7032 has an on-board Bus State Controller (BSC) that divides the 32 bit
address space into eight areas (0 — 7) [8, p.93]. This allows the data, address and
control lines for each area to be configured independently allowing a different type of
memory access for each region. Area 7 is used to access the internal RAM whilst
areas 0 — 6 are external and have the associated /CS0 - /CS6 enable lines available for
use. Only area 1 may be used to interface to DRAM and only area 6 is able to perform
address / data multiplexing. All addresses are 32 bits, although bits 28 - 31 are
actually ignored and not output externally. Bit 27 of an address is used to determine
whether the data should be accessed with an 8 (Bit 27 = 0) or 16 (Bit 27 = 1) bit
datapath. Address bits 24 - 26 are used to select one of the eight memory areas and are
used as output to the /CS0 - /CS6 lines. Address bits A0 — A21 are available as output
from the chip. This allows 4Mbyte of physically addressable space in each area. Bits
22 and 23 are used as physical address lines only when the address is multiplexed for
access in the DRAM area. This allows up to 16Mbyte of DRAM to be used. In the
other areas these bits provide shadow addresses for the physical 4Mbyte available.
These shadow areas provide a logical 16Mbyte address space. On the evaluation
board, the EPROM is set up to use memory area 0 whilst the SRAM uses memory
area 2. On the thesis project board, the DRAM uses memory area 1 whilst the control
registers of the NIC (discussed later) use memory area 6. Figure 10 shows the system

memory map for this thesis project.

22

3.0 HARDWARE IMPLEMENTATION

HOS INVHOS\SISTHIND

L661-90-0T

quInN

by [\

1
700l L

alala

s19)s139y DIN PU¥ WVIA

TEDHYL

)
PHTOHBL
o7 [
51 ,\olﬂu
AT T 53&
€AT &vT Y0DHYL
AT vt MM«K
1AT vt
v g S
vAIL w1 o
€A1 VI v, LINOOSWINIS
A1 i ay
T it av_/| an M]
Tin SV NZ Csv_]
48V e
T 40 g7
> 8 L 9T
S © 4= <M]
$LOHFL ﬁ 5 q
van e e —d
0z
PLEOHYL ZEOHIL LASTA O ot "
=l £0da o
¥ Wa -
20 o a
- A ooa ——9 o
N 5 —< 555] 2 “Irola >
Nv e X G Em 2010 siv
N VAo s — v
R 0 MY 8v z
N—fav 0 € 3 v
- N—av e} wa - v A7
{Ieolav O 10 a 3% X2
IV ® o a v v
5in Y =
v v
v
ov & oV
ol > —i

23

3.0 HARDWARE iMPLEMENTAT!ON

32 bit access

16 bit access

8 bit access

8 bit access

8 bit access

8Kbyte x 8
INTERNAL RAM

256Kbyte x 8
SRAM

77

NIC

Control registers

V.

1Mbyte x 8
DRAM

Ui

64Kbyte x 8
EPROM

HOFO01FFF

HOF000000

HOA040000

HOA000000
HO0600000F

H06000000

HO01100000

H01000000
H00010000

H00000000

3.3 Ethernet Controller

FIGURE 10: System Memory Map.

Choosing the AUI network interface of the DP83902 Network Interface Controller

meant that only a small number of components were required for the network side of

the project board. When using the AUI, the external 10Base-2 or 10Base-T adaptor

provides collision detection, thus three signal pairs connect the DP83902 to the AUI

plug. These are: TX+, RX+ and CD+. A pulse transformer is used to provide isolation

on these three pairs between the controller and the network connection. The

DP83902A connections may be seen in the Ethernet Controller schematic overpage.

The DP83902 provides three outputs to signal network collisions, data transmission

and data reception. These provide a 50mS active high TTL signal [16, p.6]. These

were connected so that a green LED signalled data activity (reception or transmission)

and a yellow LED signalled a collision.

24

3.0 HARDWARE IMPLEMENTATION

N SUIOUOIN__Ad UMl F08 TANSAHLNHOSSISTHIND.

Jo_ s L6100 ATINOTPA
00§
4 —ARA
N ity

JoquIN oz P4yt

JI[[0NUO)) PLIRF T08TVHL
apL qaTuean ¥
< Y 00§
v N Y
: o
9 'L

ain €1

= oy
S _ I|<| NN\
AAINOL adzz = ord
U1 qu01 T a o_ -
z
ﬁTHI O 1 —

1L
o1
3 ‘
s‘
<l<|<|<

wiy 9Z8E9%HY B 5283 | ,
s1gd 1 1m mm S8 A ="
= N =
H W ST70)
. o ool
o— fal XWSUO m slav
S T TV
: B i @ $1av TS
8 lod flav 6T n_w<
: L% 00 aav —E——
- o T -XL av €T T u.(
o = L xi olay — L
_ g R o I
: + 5
5 X 4 -oxt - — I &L - wav —= Ay >
T 2 P —
T 18 ¥ ,
o w1 w1 T cav d
[LI Sl ¥4 3 Ll av
[\ 3 L T (s +oxk:. T (T2 o et v
4 L = wox1 v —a —
—_— = b,
ﬁ 1o o) av T AEL B
. . al KV
ATI+]
=
B
ww IHWH 5 - Z —
S
V 8222530 I3 B
(o ek 706£84d
L slaflslslole _ 0 o
&l e o]
Bova
—————— @
a Whd a
B
RN
o M
= e —
—— I
e
v € 4 z 1

25

3.0 HARDWARE !MPLEMENT{\T!ON_

The DP83902A uses an external 20.00000MHz oscillator connected between X1 and
X2 [16, p.6]. This is used for external network timing. The processor system clock
signal, CK is connected to the DP83902 BSCK input. This is used for timing when
performing data transfers with the system bus [16, p.5]. As mentioned earlier, the
reset signal from the evaluation board was used on the project board. A wire from the
reset output pin (Pin 2) of the DS1233A reset generator was connected to the /RESET
input of the DP83902A.

The DP83902A has three pages of registers that are all 16 bytes in size. Only pages 0
and 1 are used in operation as page 2 is used for factory testing [16, p.25]. The pages
are selected by bits in the command register which is at relative address 0 on each

page. The registers in pages 0 and 1 may be seen in Table 1.

TABLE 1: Page 0 and 1 DP83902A Control Registers [16, pp.24..25]

PAGE 0 PAGE 1
RAO - RA3 RD WR RAO - RA3 RD WR

HO0O0 Command Command HOO0 Command Command
HO1 Current Local Page Start HO1 Physical Physical
DMA Address 0 Address 0 Address 0

HO02 Current Local Page Stop HO02 Physical Physical
DMA Address 1 Address 1 Address 1

HO3 Boundary Boundary HO3 Physical Physical
Pointer Pointer Address 2 Address 2

HO4 Transmit Status Transmit Page HO4 Physical Physical
Start Address Address 3 Address 3
HO5 Number of Transmit Byte HO5 Physical Physical
Collisions Count 0 Address 4 Address 4
H06 FIFO Transmit Byte HO06 Physical Physical
Count 1 Address 5 Address 5
HO7 Interrupt Status Interrupt Status HO7 Current Page Current Page

HO08 Current Remote Remote Start HO08 Multicast Multicast
DMA Address 0 Address 0 Address 0 Address 0

HO09 Current Remote Emote Start HO9 Multicast Multicast
DMA Address 1 Address 1 Address 1 Address 1

HOA Reserved Remote Byte HOA Multicast Multicast
Count 0 Address 2 Address 2

HOB Reserved Remote Byte HOB Multicast Multicast
Count 1 Address 3 Address 3

HOC Receive Status Receive HOC Multicast Multicast
Configuration Address 4 Address 4

HOD Tally Counter 0 Transmit HOD Multicast Multicast
Configuration Address 5 Address 5

HOE Tally Counter 1 Data HOE Multicast Multicast
Configuration Address 6 Address 6

HOF Tally Counter 2 Interrupt Mask HOF Multicast Multicast
Address 7 Address 7

26

3.0 HARDWARE iMPLEMENIqATlONM

It was decided to use area 6 of the SH7032 memory space to interface to the
DP83902A control registers. To achieve this, the processor /CS6 signal was connected
to the DP83902 /CS input and the lower four address bus lines were connected to
RAO..RA3. When the /CS line goes low, the DP83902A enters slave mode and its
control registers may be accessed [16, p.5]. The /RD and /WRL processor signals are
connected to the slave read, /SRD and slave write, /SWR inputs respectively. As only
the lower four address lines are used and memory area 6 is accessed with an 8 bit

datapath, the addresses of the control registers are H06000000 to HO600000F.

Unfortunately, when writing to the DP83902A control registers, the data hold time of
the SH7032 is not as long as the DP83902A requires. (The SH7032 provides a
minimum OnS data hold time.) This means that the data bus could not be connected
directly to the DP83902A address / data lines. To solve this problem, the circuit seen
in the DRAM and NIC registers schematic (shown previously) was used. Here, the bus
clock signal is inverted and used to latch the write data into the 74HC374 octal D-type
flip-flop. The /WRL signal is used to control the output of the octal flip-flop so that
data is output on the address / data bus only when required. However, the /WRL
signal is first latched through a D-type flip-flop before connecting to the 74HC374
/OE input. This causes the output of the data byte to be delayed slightly and thus meet
the hold time requirements of the DP83902A. To allow the control registers to be read
using this configuration, a 74HC244 octal buffer with tri-state output was used as seen
in the DRAM and NIC registers schematic (shown previously). The /RD signal is used
to enable the output from the DP83902A onto the system data bus. Note that both the
/WRL and /RD signals in this circuit have been OR’ed with /CS6 so that the
74HC374 and 74HC244 are only enabled onto the local and system data buses

respectively when access to the DP83902A registers is taking place.

The /ACK output from the DP83902A is used to signal the processor that it may
continue with a control register read or write operation. This signal needed to be
inverted before connecting to the SH7032 /WAIT pin. It was also OR’ed with the
/CS6 signal to ensure it would only be used when access to the DP83902A registers
was taking place. The implementation for this, seen in the Power Filter and SH7032

Inputs schematic (shown previously), was more complex than it could have been, as it

27

3.0 HARDWARE WPLEMENTATION

was implemented after the thesis board was built and existing spare logic gates were

used.

For each memory area, monitoring of the /WAIT signal can be enabled or disabled [8,
p.93]. For area 6, used by the DP83902A, the SH7032 was configured to monitor the
/WAIT signal during a read or write cycle, allowing the insertion of wait states until

the DP83902A was ready.

The active high INT signal from the DP83902A is asserted whenever the reception or
transmission of an Ethernet packet is completed [16, p.4]. This signal was inverted
and connected to the /IRQO SH7032 input. By doing this, an Interrupt Service Routine
(ISR) for Interrupt Request 0 (IRQO) could be used to handle the software
requirements of reception and transmission of packets. This ISR written to do this will

be discussed later.

The Ethernet controller’s address and data buses may be interfaced to the system
buses in a number of ways. The ideal method for high performance is a Bus Master

Architecture seen in Figure 11 [27, p.4].

Ethernet ¢) Packet
Controller Buffers
Network System Bus System Memory

FIGURE 11: Bus Master Architecture [27, p.4].

In such a configuration, the Ethernet controller is connected directly to the system
bus. Received packets and packets to be transmitted are DMA’ed directly to and from
system memory. This arrangement requires that the processor must pass control of the
system bus to the Ethernet controller quickly so that data coming from the network is
not lost. The DP83902 and SH7032 are both able to operate in this arrangement.
However, the DP83902A requires that it becomes and remains bus master without

interruption while it is performing a DMA transfer. Unfortunately for this project, the

28

3.0 HARDWARE IMPLEMENTATION

SH7032 automatically revokes bus ownership every time automatic DRAM refresh is
required [8, p.149]. The DP83902A drops any data that is transferring if interrupted in
this way [16, p.43].

Hence, an alternative /0O Mapped Slave Architecture, as seen in Figure 12, was
required [27, p.3]. In this arrangement, the Ethernet controller has its own local data
and address bus connected to some additional packet buffer memory. This allows the
DP83902A controller to DMA packet data to and from the local packet buffer without
interruption. The data port connection between the local and system bus allows the
two to be connected on request to transfer data between local and system memory.
The processor is notified whenever a packet is received or sent and the DP83902A is
programmed to use a separate remote DMA controller to transfer data between the

system memory and the packet buffer memory through the data port.

Ethernet Data
Controller Port

Packet <P
Buffers

Network Local Memory Local Bus System Bus

FIGURE 12: /0 Mapped Slave Architecture [27, p.3].

The circuit seen in the Buffer Memory schematic overpage implements this
architecture. Two 6164 8Kbyte SRAMs are used to provide 16Kbyte of buffer
memory accessed using a 16-Bit data path. The DP83902A multiplexes address and
data onto a single 16-bit bus. Because of this two 74HC373 Octal latches were used to
latch the addresses when accessing the SRAM. Latching is performed by using the
DP83902A signal ADSO0 which is provided for this purpose. The Master Read Strobe,
/MRD and Master Write Strobe, MWR signals from the DP83902A are used to select
whether to read from or write to the SRAMs.

29

3.0 HARDWARE IMPLEMENTATION

1
z
: : TEOHVL
z RGE! SISTHIVD
GOk SOOI+ HOS SEHANAHOSSISTHIND B
| 4 5
az
uoistay | JquImN 1S .
Atoundpy yng ooz |
L |
N Y |
. N_S1av. "/
N_r1av
av rieia |/
- N D W —ana A
N € € fia A
N\ L1V (o] a —
o1V g Loa | /]
. - = (o] a 6
) T N ® 0d g
EQ
919 <
oA 180 |
i WM |_| PLEOHYL
o 3OA
T30 & e
o 10 o
- a
LV - “ . - L
W v . B —
§< [:<m /1 N ® sa _ :
701V N 2 S ”
/] DHPL a
N\ La M« 4 «m / £LE M‘_ = N_tav o 4% T_ta
o1 v 0 a =
NI 5 v N— 10 p—+ = N_av 1 S A
iy a & « / — 1D LA t—e— N\ M« 00 od 0
NIV € v v 7 v i | |
Nw — w Y A ® % -
— f av a v Vg R va 2 sa ”<L\
& = = E = R i % av $LEOHPL
a 8N N\ vd_6 | a o~ N 1 =
R v 19 I 5av__ N\ __8aV. € 1a 1 5
A e % o 3aV N__6av 2 «a D /|
Ve <
o1av o 4
— w9 T # N_11aVv o 1
_ Ll Naav_— | o T/ | 5
7 av__ Y laq £1d S8la >
18D | i
i av___ L ,g ® o
Nmum 7 7 av_ sl
o= N
B — 9 2
SR L= —x
= v/ €LEOHYL - -
v o L =
' v 7} g VLEOMPL Camd |
6V - 40 0‘|U_ — B
8V L - L
— o N a v v ‘N T Wi N = a BT
¥ \ LaV. m_ oa 9V «M — I\ Ve 9 Nw wm " M« \” u« MM MW |I|laa \\
Nrwm« Ll v va__ A\ va S| oo = _ VN Qv G < g
30h N o Al vi___ A\ Vi g)\ v LN n /
= Ve 0 wa v N av o = S— ..
\ £aV. a v vl /] vl 9 |5 a av__/N\ oAV T a S oL_od Ao
e \cdv. a v i :
< e 0 o av av El _Lola o
N od Vo iva Ve)
av - =
>0
5
30
|
LIeolav)

30

Four 74HC374 Octal D-Type Flip-Flops were used as the interface between the local
bus and the system bus. These provide a 16-Bit wide bi-directional data path. Data
written to the buffer memory is latched onto the local bus using the SH7032 signals
read. /RD and DMA Acknowledge 1, /DACK1 which are OR’ed together. These
signals are output in response from a DMA request on Channel 1 from the
DP83902A. The /DACK1 acknowledges the request and the /RD signal is present as
the data has been read from system memory. Similarly the write, /WR and DMA
Acknowledge 1, /DACK]1 signals are used to transfer data from the local bus to the

system bus. In this case, the data is being wriffen into system memory.

The schematics for the thesis board are compiled in Appendix A, while associated
timing diagrams may be seen in Appendix B. The PCB layout for the developed thesis
may be seen in Appendix C. A photograph of the completed board piggybacked onto

the evaluation board may be seen in Figure 13.

FIGURE 13: Photograph of the completed thesis board.

31

3.0 HARDWARE IMPLEMENTATION

3.4 Appliance Interface

For demonstration purposes, a Sunbeam toaster was procured for use. The toaster was
an old design in which a mechanical switch was triggered by inserting a slice of
bread. This caused the toaster to lower the bread and turn on the heating element if the
power was on. For this project the mechanical toast sensing switch was altered so that
it closed two contacts connected between 5 volts and a parallel input on the project

board.

The toaster lowered the bread by using a piece of metal that expanded as the heating
elements heated it. Thus when the elements turned off, the toast would rise as this
strip cooled down. A sliding darkness control on the front moved a metallic strip
closer to a mechanical power switch inside that turned off when the strip expanded.
Thus by adjusting this strip’s position the heating time could be altered. This darkness
control was removed and the internal mechanical power switch was made
permanently on. Power to the toaster was instead controlled by a Solid State Relay
(SSR) that could switch 240volt AC at 30A. Control of this SSR was by a 5 volt
signal and required approximately 0.6mA. A parallel output from the thesis board was
used to drive this. Note that only the active line of the mains supply is switched.
Ideally for safety, in a commercial product, both the active and neutral lines would be

switched. A diagram of this configuration may be seen in Figure 14.

Toast I—‘ 5V
Switch Digital Out
Digital Out
/ SSR
GND
Heating
Elements
ACTIVE
NEUTRAL
Chassis GND

FIGURE 14: Interfacing to the toaster.

32

A

The configuration outlined above allowed the processor (0 determine whether toast
had been put into the toaster as well as controlling the amount of time the heating
clements were switched on. Remember also that the toast was lowered or raised
automatically by the piece of metal that expanded and contracted as a result of the
heat generated by the heating elements. A photograph of the complete system ready

for operation may be seen in Figure 15.

FIGURE 15: Photograph of the complete thesis project.

(5]
L

4.0 SOFTWARE IMPLEMENTATION

4.0 SOFTWARE IMPLEMENTATION

Development of the system software began after the hardware had been designed and
manufacture of the PCB was awaited. The software required includes a simple, low-
level system initialisation file, a multi-tasking Operating System, an Ethernet device
driver, a TCP/IP protocol implementation, an API to this software and a simple,
application layer HTTP server. The implemented source code may be found on the
accompanying 3 % inch floppy disk included at the back of this thesis. The software

file structure follows the hierarchy shown in Appendix E.

4.1 System Initialisation

The assembler file start.s configures a number of the internal SH7032 peripherals.
The peripherals have a large number of memory-mapped control registers that are
located in the address range HSFFFECO -- HFFFFF7. Many of the SH7032 pins have
a number of functions. Start.s firstly configures the SH7032 Pin Function Controller
(PFC) which selects which function each of the SH7032 pins will perform [8, Ch.15].

Table 2 summarises the options selected.

TABLE 2: Pin Function Controller Configuration

REGISTER ADDRESS VALUE CONFIGURATION

Port A Control 1 H5FFFFC8 HF122 | Enable DREQ1, DACK1, IRQO and TIOCA1
(used for PWM)

Port A Control 2 H5FFFFCA HBF98 | Enable /RD, /WRH, /WRL, WAIT, /CS6 and
/RAS.

Port A 1/O H5FFFFC4 H0400 | Enable TIOCA1 as output.

Port B Control 1 H5FFFFCC HOOAA | Enable PB15, PB14, PB13, PB12, (output to
toaster) RxDO, TxDO, RxD1 and TxD1 (serial
ports).

Column Address Strobe Pin Control H5FFFFEE H6FFF | Enable /CS1 and /CAS.

The second peripheral to be configured is the Bus State Controller (BSC) [8, Ch.8].
This allows the configuration of the memory areas. In particular the sampling of the
/WAIT pin, the number of wait states to automatically insert and the refreshing and
access of DRAM may be selected. Table 3 shows the configuration used for this

project.

34

4.0 SOFTWARE IMPLEMENTATION

TABLE 3: Bus State Controller Configuration

REGISTER ADDRESS VALUE CONFIGURATION
Bus Control H5FFFFAQ H8800 | Area 1 DRAM enabled.
Area 6 data / address multiplexing disabled.
Wait State Control 1 H5FFFFA2 H42FF | Area 6 /WAIT pin sampling enabled.
DRAM wait state insertion enabled.
Wait State Control 2 H5FFFFA4 H0000 | DMA transfer wait state insertion disabled.
Wait State Control 3 H5FFFFAG H7800 | External control of WAIT pin enabled.

4 wait states inserted for areas 0 and 2.
3 wait states inserted for area 6.

DRAM Control H5FFFFA8 H2600 | 2 state /RAS pre-charge

Multiplex address 10 x 10
Refresh Control H5FFFFAC H5A80 | /CAS-before-/RAS refresh enabled
Refresh Time Constant H5FFFFB2 H9696 | Refresh timer constant of 150 pulses
Refresh Timer Control/Status H5FFFFAE HA508 | Timer based on system clock / 2

The SH7032 Interrupt Controller (IC) allows the assignment of priority levels for each
of the external and internal interrupt sources on the chip [8, Ch.5]. The priority levels
range from 0 (lowest level) to 15 (highest level). It also allows the setting of an
interrupt mask value that masks off interrupts that have a priority level lower than the
mask value. The mask value may be between 0 (all interrupts enabled) and 15 (all
interrupts disabled). The Non-Maskable Interrupt has a priority level of 16 and thus
may not be masked off. At system startup, the mask is set to 15 so that all interrupts

are disabled. Table 4 summarises the interrupt settings for this project.

TABLE 4: Interrupt Controller Configuration

REGISTER ADDRESS VALUE CONFIGURATION
Interrupt Priority A H5FFFF84 H7000 | Assign priority level 7 to IRQO (used by
DP83902A).
Interrupt Priority C H5FFFF88 HOOAO | Assign priority level 10 to Timer 0 (used by OS
as a Real Time Clock).

The Direct Memory Access Controller (DMAC) provides for four control registers for
each of the four DMA channels supplied by the SH7032 with an additional master
control register [8, Ch.9]. The DMA Channel Control Register 1 is used to configure
DMA channel 1 which is used by this project. The only setting made at this stage is to
make the DACK1 output an active low signal.

The Integrated Timer Pulse Unit (ITU) of the SH7032 provides five 16-bit timers [8,
Ch.10]. Timer 1 is setup to be used for Pulse Width Modulation and is used in

conjunction with the TIOCA1 pin. Timer 0 is configured to provide an interrupt every

35

4.0 SOFTWARE IMPLEMENTATION

26.2mS which is used as a Real Time Clock (RTC) for the operating system. This is
done by setting its clocking frequency to the system clock divided by 8 (20Mhz / 8)
and allowing it to trigger an interrupt and reset its count whenever it matches the
default value of HFFFF in the Timer 0 General Register A. The settings for this timer

are summarised in Table 5.

TABLE 5: Integrated Timer Pulse Unit Configuration

REGISTER ADDRESS VALUE CONFIGURATION
Timer Mode H5FFFF02 HO2 Timer 0 normal, Timer 1 in PWM mode
Timer 0 Control H5FFFF04 H23 Reset Timer 0 count on a compare match.
Timer 0 frequency is system clock / 8.
Timer O Interrupt Enable H5FFFF06 HF9 Enable Timer 0 compare match interrupt.
Timer Start H5FFFF00 HE1 Start Timer 0.

After setting up the peripherals, start.s copies a number of interrupt vectors that are
used by the MONITOR debugging package provided on the evaluation board EPROM
into SRAM. This is to allow interrupt vectors to be defined by the user. The Vector
Base Register (VBR) is used to point to the base of the vector table so that no matter
where the vector table is placed in memory, the relative interrupt vector offsets are
still valid. The VBR is changed to point to the beginning of the vector table in the
SRAM. Start.s then zeroes out the memory space used by uninitialized global
variables. The addresses for this area are provided by the project linker file which will
be discussed later. The code then jumps to the address of the procedure main which is

written in C and is the start of the operating system code.

4.2 Operating System

The structure of the OS will be discussed first before describing the initialisation
procedures contained in the procedure main. As mentioned before, the OS maintains a
real time clock that is triggered by the Timer O interrupt. The ISR for this interrupt
may be seen in the file time.c. This procedure decrements two counters: one that
counts from 40 and one that counts from 4. These are used to count in units of
approximately 1S and 100mS respectively. (Recall that the Timer interrupts every
26.2mS) The 1S counter is used to increment the number of seconds for which the
system has been operating. The 100mS counter is used to both wakeup sleeping

process and to trigger rescheduling of processes.

36

4.0 SOFTWARE IMPLEMENTATION

The operating system provides for the creation, suspension, resumption and killing of
processes. The system calls that perform these functions may be found in sys.c. Each
process has its own associated data structure which is defined in process.h. These
process structures are stored in process table and indexed by the process ID which is
assigned to each process as it is created. The data stored in the process structure
include the value of registers that need to be saved and restored during context
switching, the process priority, the current state of the process, the process’ stack
address and length and the address of the code for the process. When a new process is
created with the create system call, the address of the process code, the stack size and
process priority are passed as arguments. Create allocates space for the process stack,
generates a new process ID and uses this to index into the process table and define a
new process data structure. The system call kill simply frees the stack space used by
the process to be killed and sets its associated entry in the process table as free. If the

killed process was currently running, process rescheduling is performed.

The OS maintains a queue of processes that are ready to run. Every time a context
switch is required (either due to rescheduling pre-emption or a currently running
process becoming no longer eligible to run), the procedure resched in proc.c is called.
This procedure inserts the currently running process into the ready queue and removes
the highest priority process from the ready queue as the next process to run. It then
calls the assembler routine found in switcher.s to save the pre-empted process’
registers in its associated data structure and restores the new current process registers.
When this routine returns, the process removed from the ready queue is now running.
A process may be suspended by the system call suspend. This removes the specified
process from the ready queue so that it is no longer available for rescheduling. If the
process was currently running, resched is called to select a new current process. The
system call resume makes a suspended process eligible for scheduling again by
calling the procedure ready in proc.c which simply adds the specified process to the

ready queue.

A process may put itself to sleep by calling sleep which puts the process into a sleep
state for a period specified in seconds. To do this the process state is marked as

SLEEPING and the process is put into a sleeping queue. Every time the 100mS timer

is incremented in the clock interrupt, the sleeping queue is checked to see if any

37

4.0 SOFTWARE IMPLEMENTATION

processes should be woken up. To wake up a process, it is removed from the sleeping
queue and marked as READY. The diagram in Figure 16 shows process states and
transitions in this OS. Note that the states WAITING and RECEIVING will be

discussed below.

Wakeup Sleep
SLEEPING |<—
Send i
2 RECEIVING Recfive
Signal :
WAITING Watt
Resched
READY s CURRENT
2 Resched
Suspend
Suspend

SUSPENDED [«

Resume
Create

FIGURE 16: Process State Diagram.

At this point is important to mention a slight fix required in assembler code for
prcoedures that are to run as processes. Usually when a subroutine jump is compiled
in assembler, the return address is pushed onto the stack. However, the SH7032 has a
special Procedure Return (PR) register. The C compiler for the processor uses this
register to store the address to jump to after the subroutine call returns. This is fine in
normal procedure calls, but does not function correctly when context switching is
required. This is because when a process becomes current for the first time, the return
address is saved in the PR register. In this case the address saved is that of the resched
procedure. When the process finishes this address will be returned to rather than the
required userret procedure in proc.c. To solve this problem the code in switcher.s
enters the correct return address in the PR register but the entry and exit code in the
process procedure must be modified so that the correct PR value is not overwritten.
To do this, process procedures must be compiled to assembler code, edited and then
further compiled to object code. Listing 1 shows an example of the original assembler

code produced when compiled, while Listing 2 shows the required changes. Note that

38

4.0 SOFTWARE IMPLEMENTATION

editing at the end of the procedure is only required for a process that returns (i.e. does

not run in an infinite loop).

LISTING 1: Assembler code produced by compiler.

netstart:
mov .1 rg,@-rl1b \
mov.1 r9,@-r15
mov.1l rl0,@-rl5
mov.l rll,@-rl5
mov.1 rl2,@-r15
mov.l rl3,@-rl5 Entry code
mov.l rl4,@-rl15
sts.1 pr,@-rl15 e—_|
mov rls,rl4 | Delete
mov.1 L15,rll1
mov.1 L16,r9
jsr @r9 o Move to last
1ds.1 @rl5+,pr 4{ command in
mov.l @rl5+,rl4 procedure
mov.l @rl5+,rl3
mov.l @rl5+,rl2
mov.l @rl5+,rll >. Exit code
mov.l @rl5+,r10
mov.l @rl5+,r9
rts
mov.l @rl5+,r8 _/

LISTING 2: Assembler code with required changes.

_netstart:
mov.1 rg,@-rl15)
mov.l r9,@-rl5
mov.l rl10,@-rl15
mov.1 rll,@-rl5
mov.l rl2,@-rl15
vl r13e-rls > Entycode
mov.1l rl4,@-rl5
mov r15,rl14
mov.1 L15,rl1l
mov.l L16,r9
Jsr @r9 -
mov.1l @rlS5+,rld4 T
mov.l @rl5+,rl13
mov.l @rl5+,rl2
mov.l @rl5+,rll
mov.l @rl5+,rl0 >. Exit code
mov.l @rl5+,r9
mov.l @rl5+,r8

1ds.1 @rl15+,pr

rts

nop ~

39

4.0 SOFTWARE IMPLEMENTATION

As well as process control, the OS provides quite sophisticated memory management.
The memory available for use by the OS in this project was the 256Kbyte of SRAM,
1Mbyte of DRAM and 8Kbyte of internal RAM. The compiled code is downloaded
into the SRAM during development. It was decided that the internal RAM would be
used as stack space as it provides fast access, the DRAM used for dynamically
allocated space and uninitialised global data while the free space in the SRAM would
be used for pre-initialised global variables. This organisation was created through the

use of the linker command file s7.cmd which may be seen in Listing 3.

LISTING 3: SR.CMD linker command file.

ENTRY(_start)
OUTPUT_FORMAT (srec)
MEMORY {

dram : ORIGIN = 0x1000000, LENGTH = 1024K
sram : ORIGIN = 0xA000000, LENGTH = 64K
ram : ORIGIN = 0xF000000, LENGTH = 8K
}
SECTIONS {
.vects 0xA002000 : { *(.vects) } > sram
text ¢ { *(.text) ; } > sram
.mdata : { _data = . ; *(.data) ; _edata = . ; } > sram
.bss 0x1000000 (NOLOAD) : { _bss = . ; *(.bss) *(COMMON) ; _ebss = . ; } >
dram
.stack OxFOO1FFC : { _stack = . ; *(.stack) } > ram

This file specifies that the linked file format should be srec, which is used by the
MONITOR debugging program provided on the evaluation board EPROM. As well,
the size and start address of the three memory areas are defined and assigned a name.
It then specifies in which of these areas each section of the code should be placed. The
first section is vects which is specified in the file vects.c and contains user defined
interrupt vectors (including those for the clock and ethernet ISRs). Note that some of
these vectors are overwritten by the MONITOR vectors in startup.s. The next defined
section is fext which contains the actual program code. The mdata section consists of
the initialised global variables while the bss section consists of the uninitialised global
variables. The NOLOAD option is specified for this section which means that data is
not downloaded to this section. This is firstly because there is no valid data to
download and secondly because the DRAM in not usable until it is configured by
start.s. The bss and ebss values are however, used in start.s to zero out this section as
mentioned previously. The initial value of the stack pointer is set to the top of the

internal RAM and is also used in start.s.

40

4.0 SOFTWARE IMPLEMENTATION

With the memory configured as above, the OS needed to provide management of the
free DRAM used for dynamically allocated heap space as well as the internal RAM
stack space. The system calls getheap, freeheap, getstack and fireestack were written
to achieve this. The OS maintains a list of free blocks of heap and stack memory.
Getheap and getstack both search their corresponding free block lists and use the first
available block that is big enough. Getheap searches the space from lowest address to
highest, while getstack searches from highest to lowest as the stack always grows
downwards. Freeheap and freestack return allocated memory to its corresponding free
list and also merges any adjacent free blocks. Both getstack and freestack are used
automatically during creation and killing of processes respectively, while getheap and

freeheap need to be called from a user process.

Higher level memory management was also implemented to prevent the system from
deadlocking. Deadlock can occur if one or more processes are allocated all the
available heap space. This is highly possible in a networking system where packet
buffers are continuously allocated. In this situation a process that needs heap space to
process these buffers is unable to run and the system deadlocks. To prevent this the
memory space is partitioned into buffer pools and a process is allocated a memory
partition in which it may use as much memory as it requires. The system calls
required to implement this appear in syscall.c. Poolinit, mkpool and mark are used to
initialise the buffer pools. Gerbuf returns a free buffer from a specified buffer pool

while freebuf returns a buffer to its correct buffer pool.

The OS provides simple but powerful process communication and coordination
through the use of semaphores implemented in the system calls wait and signal found
in syscall.c. A process that calls waif on a semaphore s, decrements s and then returns
immediately if the value of s is greater than or equal to zero. If not, the process’ state
is changed to WAITING and the process ID is added to a queue of waiting processes
associated with the semaphore s. A signal call on a semaphore s, increments the value
of the semaphore and makes the first waiting process, if one exists, ready to run.
System calls screate and sdelete are provided so that processes may dynamically

create, use and delete semaphores from the total number provided by the system.

41

4.0 SOFTWARE IMPLEMENTATION

The process data structure mentioned previously also contains a defined space for
messages to be stored that form the basis of a simple message passing mechanism
between processes. The system call send allows a message to be sent to a process
specified by a process ID. The system call receive checks the calling processes data
structure for a message and returns immediately if one exists. If not, the processes’
state is set to RECEIVING and the process is made ineligible for scheduling. Once a
message is received, the process state is set to READY and the process is again able
to be scheduled. Two variants of receiving a message are supplied by the system calls
recvelr and recvtim. Recvelr checks for a message for the calling process. Whether or
not one exists the call returns immediately. Recvtim behaves much like receive
however after a specified time out period if no message is received the process state is

set to READY and made eligible for scheduling.

A higher level message passing capability is also implemented in this OS.
Communication ports are not process specific and provide the capability of storing a
number of one word messages [4, p.242]. A port is implemented using a FIFO queue
and two semaphores. The semaphores are used to block processes that attempt to add
a message to a port when it is full and processes that attempt to retrieve a message
from an empty port. Thus a processes that sends a message to a port using the system
call psend returns immediately unless the specified port is already full in which case it
remains blocked until at least one message is retrieved. Similarly a process using the
system call preceive returns immediately with the message at the head of the port
queue or is blocked on an empty queue until a message arrives. The system call
pdelete deletes a port and frees any waiting messages and associated blocked
processes, while preset frees messages and processes but leaves the port available for

use again. These system calls may again be found in syscall.c.

Now that the OS structure has been described, its startup initialisation may be
described. As mentioned earlier, the code in start.s calls the procedure main which is
the start of the operating system proper. Main firstly writes a startup message over the
serial port to the development computer using a routine provided by the MONITOR
debugging program. Sysinit is called which initialises all aspects of the operating
system including major system variables, free stack and heap memory lists, process

table entries, semaphores, process ready list, buffer pool management and the real

42

4.0 SOFTWARE IMPLEMENTATION

time clock. As well a process table entry is made for a null process. A null process is
required as when there are no user processes available to switch to, the scheduler still
needs to perform a context switch. After sysinit returns, the RTC is running but
interrupts are still masked. The system outputs free memory space details to the
development PC over the serial port and then enables the system interrupts. At this
stage, main becomes the null process. The null process enters an endless FOR loop
after creating and starting the process netstart which initialises and starts the

networking software.

4.3 Device Driver

The device driver for the Ethernet controller consists of four main routines. Ethinit is
used to initialise the DP83902A and Ethernet data structures. Ethwrite and ethread are
used by high level routines to write and read packets to and from the network, whilst
ethint is the ISR that is called whenever the DP83902A completes reception or
transmission of an Ethernet packet. The Ethernet controller has an associated data
structure that stores the physical and broadcast addresses associated with the
controller, the number of the network interface it belongs to and a pointer to an output

packet queue. This structure is defined in ethernet.h.

Ethinit firstly allocates space for the output queue and assigns the physical and
broadcast addresses as well as outputting them to the development PC over the serial
port. The DP83902A is then initialised for use. This involves configuring a number of
the DP83902A control registers, setting the physical address so that packets may be
filtered, resetting the interrupt status register and putting the device into start mode so

that reception and transmission may be performed.

To write a packet over the Ethernet, ethwrite is called with a specified packet buffer
and length of this packet. Ethwrite firstly ensures that the packet length is within the
allowable range. If the packet is too big it is discarded and if it is too small it is zero
padded to the minimum length. Following this, the physical address of the Ethernet
controller is copied into the physical address portion of the packet to be sent. The
packet is placed in the output queue for the controller or discarded if the queue is full.
The procedure ethxmit is then called after disabling interrupts. Ethxmit checks

whether the DP83902A is currently transmitting a packet. If it is, ethxmit returns, as

43

4.0 SOFTWARE iMPLEMENTAT!OfQ

when the current transmission is completed, the ISR will automatically retrieve the
next packet from the output queue to send. However if no transmission is currently
taking place, one must be initiated. To do this, a packet is retrieved from the output
queue and DMA’ed to the local packet memory. The DP83902 is then given the
address of the start of the packet in local memory and the transmit command is written

to the command register.

Ethread is not explicitly called by a higher level procedure. Instead Ethint calls it
when a packet is received. Once the packet is read Ethread sends the packet to a
higher level protocol. The packet is transferred upwards through the protocol software
until it reaches an application that is waiting for received data. Ethread commands the
DP83902A to transfer a packet via DMA from the local memory to system memory.
Once the packet is transferred, ni in is called which demultiplexes the packet
depending on its protocol type and sends it to the appropriate network input

procedure.

Ethint is called by the Ethernet interrupt that occurs when either a packet has been
successfully transmitted or received or when the local receiving buffer has
overflowed. A loop is entered in which all pending interrupts of the DP83902A are
serviced. The ISR firstly checks whether the receive buffer has overflowed. If it has
all buffers that have been received are transferred to the system using ethread. The
DP83902A is reset and if a packet transmission was pending this is started. If there is
no buffer overflow, all received packets in local memory are transferred to the system
memory. Following this, if a packet has been successfully transmitted, ethxmit is

called to initiate the transmission of another packet from the output queue.

4.4 Network Protocol Stack

As mentioned earlier, the device driver and ARP software both lie in the data-link
layer of the network protocol stack model. The ARP software developed in this
system is based around a table containing a number of arpentry data structures
defined in arp.h. These entries are able to contain a physical address and
corresponding logical address as well as the state of the entry — if it is valid, invalid,
pending translation etc. The file arp.c contains a number of procedures that are used

to implement the Address Resolution Protocol. Arpfind returns an ARP entry for the

44

4.0 SOFTWARE IMPLEMENTATION

specified logical address or returns nothing if an entry does not exist. Arpalloc iterates
through the table and allocates a free entry for a specified logical address. Arpsend
broadcasts an ARP request packet over the network given a logical address with an
unknown hardware address. When a ARP protocol packet is received and
demultiplexed by ni_in, it is sent to arp_in. If the packet is a request for a translation
of a logical address matching that of the system, a translation response is sent using
ethwrite. However, if the packet is a translation response, and the translation request
has not timed out, the translation is added to the ARP table. After this any packets that
have been queued for transmission to the previously unknown physical network
address are sent by arpgsend. The ARP software also includes a timer procedure
arptimer, that iterates through the ARP table and removes any entries that have
reached an age threshold. This ensures that only up-to-date entries remain. Arpdq is
used to delete any queued packets that are associated with an ARP entry that is

deleted. The arptimer procedure is called by the process slowtimer once a second.

Slowtimer is an endless loop that operates by putting itself to sleep for one second.
After it is woken up, it calculates the exact time for which it was asleep using the
system call gettime that returns the number of seconds for which the system has been
running. The arptimer and ipftimer (discussed later) procedures are then called with

the exact sleep time as an argument.

The IP layer in this system is based around the ipproc process found in ipproc.c. This
process loops endlessly. It firstly retrieves a received packet from either the Ethernet
interface or the local pseudo interface using the procedure ipgetp. The local pseudo
interface is implemented similarly to a physical network interface, however packets
sent and received through this interface are transferred to and from higher level
software on the same system. This greatly simplifies the IP process [6, p.31]. [pgetp
chooses the interface to extract the next packet from in round robin order. It returns
the packet and the number of the interface on which the packet was received. After
discarding any invalid packets, a normal IP implementation would use a complex
routing algorithm to determine the next network hop for the packet (this can include
sending the packet to higher level software through the local interface). However, as
mentioned earlier since this system will not be used as a gateway, it is possible to

simplify the routing algorithm to merely check for four conditions. These conditions

45

4.0 SOFTWARE IMPLEMENTATION

are determined by whether the source of the packet is local or non-local and whether

the destination is local or non-local.

If both the source and destination is non-local, the packet requires gateway routing
and hence the packet is discarded. If the source is non-local and destination is local,
the procedure ipputp is used to send the packet to the local interface. If both the
source and destination are local, a similar call to ippufp is made. Lastly, if the source
is local and the destination is non-local, netmatch is used to determine whether the
destination is on the same subnet as the Ethernet interface. If it is, ippufp is used to
send the packet directly to the destination over the Ethernet interface. If the
destination is on a different subnet, ipputp is used to send the packet to a gateway so

that it may be routed correctly.

The IP code also provides for fragmentation of packets if they are longer than the
Maximum Transfer Unit (MTU) size for the Ethernet interface. Reassembly of
incoming fragmented packets is also implemented. The IP output procedure ipputp
fragments IP packets that are to long and uses the procedure ipfsend to send these

fragments over the Ethernet interface.

Ipreass.h defines the data structures used for reassembling incoming packets. A table
of fragment queues is implemented. When a packet is sent from ipproc using ipputp it
is eventually sent to the procedure netwrite. Netwrite will write the packet to the
Ethernet interface if this is specified. If the packet destination is local, the procedure
local_out is called. Depending on the protocol of the packet received, local_out will
either send it to an ICMP or TCP input procedure. Firstly however, ipreass is called to
handle reassembly of fragmented packets. If the fragment received does not complete
a packet it is added to a fragment queue using ipfadd. However, if the packet is
completed, ipfjoin, ipfhcopy and ipfcons are called which return a complete packet.
Ipftimer is called from the system timer process slowfimer. This procedure iterates
through the fragment queues updating each fragment’s associated time-to-live field

and deleting any expired fragments.

As mentioned earlier the ICMP implementation for this system is greatly simplified.

A received ICMP packet is sent by the local_out procedure to icmp_in. Icmp_in

46

4.0 SOFTWARE IMPLEMENTATION

discards invalid packets or any packets that are not echo requests. For an echo request,
the packet type is changed to echo response and the source and destination addresses

are switched. This packet is then sent using the procedure ipsend.

Unfortunately, at this stage of development and with time at a premium, the
DP83902A Ethernet Controller was broken during testing. The ADSO0 output used for
the transfer of data to and from local buffer memory was shorted to 5 volts. A
replacement was unable to be obtained in time due to large lead times from the
supplier. Because of this setback, no further testing of the software could be achieved.
Instead, a simple two process system was developed to demonstrate the use of the

system, the OS functionality and the interface to the toaster.

4.5 Application Layer

The application layer software used for demonstration purposes consisted of two
processes. One process, input, was used to provide an interface to the user using the
development PC connected via the serial port. Options are provided to the user to
check the status of the toaster, start the toaster for a specified amount of time and to
halt the cooking of toast. Input from the user was transferred to the foast process
using send where it was used to perform the desired actions. Results were sent back to
the input process again using send. The foast process was started from the main

procedure instead of netstart. The toast process in turn started the input process.

47

5.0 SYSTEM OPERATION

5.0 SYSTEM OPERATION

5.1 Status

Unfortunately, as mentioned in the previous chapter, the system is not completely
developed. This is due to the replacement problems encountered with the DP83902A
Ethernet Controller. Further work is required on the testing of the developed network
connection and software as well as the implementation of the TCP and application

layer software.

A large amount of work and research has been performed on what can only be
considered a complex thesis project. This, together with the incomplete state of the
project, provides an excellent opportunity for this topic to be pursued further. A
continuing thesis project could aim to complete the software development and testing
and fully achieve the goals specified in this document. Alternatively, the research and

design presented here could be used as a basis for development of a new system.

5.2 Usage

The source code is compiled using the GNU C compiler provided with the SH7032
evaluation board. Use the make utility together with the makefiles provided on the
source code disk at the back of this document. Typing make clean will remove any
previously compiled object files and temporary files. Make all will compile the C
code into object files. Following this, make ass will assemble the process files in the
process directory into assembler code. After editing these as described in the previous
chapter, typing make sr will compile the assembler files and link all the object files.

This will result in a binary file toast.sr that is to be downloaded to the system.

To download the produced file, run the HINT communication program supplied with
the SH7032 evaluation board. By default, HINT communicates with the system using
COM?2. After pressing the evaluation board reset button, a message produced by the
CMON program should appear on the HINT screen. Type /:foast.sr to download the

compiled software. After it has downloaded type g to start the software running.

48

5.0 SYSTEM OPERATION

As the software is presently configured a number of messages should appear on the
HINT screen describing the amounts of memory available. The user should then be

presented with the output from the input process.

Connection of the toaster is simple. The 5 pin single in-line plug should be connected
to the power testpoints at the rear of the system board. The 10pin IDC socket should
be connected to the 10pin polarised plug at the rear left of the system board. The
mains power should be connected and turned on. The power to the toaster is not

switched by the SSR until the output from the system board is high.

49

6.0 CONCLUSION

6.0 CONCLUSION

6.1 Outcomes
Despite the incomplete status of the project, the work performed on this project has

resulted in a number of successful outcomes. These are provided in list form below.

A thorough investigation of the origins of the concept of an embedded Web

server was performed.

e A thorough investigation of all enabling technologies related to this project

was performed.

e The hardware required for a prototype embedded Web server was designed

and constructed.

e A relatively complex, yet compact, Operating System was developed for use

in the system.

e A device driver for the DP83902A Ethernet Controller was developed.

e The ARP, IP and ICMP sections of the TCP/IP protocol stack were developed.

e The use of the system at its present stage was successfully demonstrated by

interfacing it to a household toaster.

e A base for the further development of this powerful yet complex system has
been established.

6.2 Future Issues
During development of this project a number of future alterations and additions were
conceived. Firstly, the size of the developed prototype was prohibitively large for

embedding into existing electronic appliances. The physical size would easily be

50

6.0 CONCLUSION

reduced by using surface mount components. As mentioned before, once the
prototype was thoroughly tested both the evaluation board EPROM and SRAM could
be eliminated and replaced by an EPROM containing the developed software. The
DRAM and internal RAM would then be the only required memory. Designing a
complete system board, rather than using the evaluation board would reduce the size,

as in the final system, only the SH7032 from the evaluation board is required.

Perhaps the biggest size reduction would come from reducing the component count of
the system. The selection of an Ethernet controller that is able to be interrupted during
data transfers would enable the Bus Master Architecture described earlier to be
implemented. Because of this, the local buffer memory and data port chips would no
longer be necessary. This would remove approximately eight chips from the system.
This would also largely reduce the complexity of the system thereby more closely

meeting the specific goal of a simple embedded Web server.

A further development would be to improve the hardware interfacing to appliances.
Rather than a simple parallel I/O interface, a device such as an EPLD could be used to

provide interfacing to devices more complex than a toaster.

With regard to the software developed, a number of additions could be made to the
network protocol support. Network security would become an issue if this device was
to be connected on a network for long periods of time. (You don’t want people all
around the world cooking your toast!) Access to the Web server would need to be
restricted to authorised users. This could be performed by simple user name and
password checking or by a variety of networking security protocols that have been
developed specifically to solve this type of problem. A File Transfer Protocol (FTP)
could be implemented so that files could be transferred to the system [25, Ch.12)
With a large amount of custom programming, it would be possible to download a
compiled process. This process could for example, control the appliance into which

the system is embedded. Thus the use of the system could be software changeable.

A further useful addition would be to implement the Simple Network Time Protocol

(SNTP) that is able to calculate an exact time of day by communicating with time

51

servers on the Internet [25, Ch. 10]. This would enable the system to be used in

appliances that contain wakeup alarms such as sprinkler systems and VCRs.

This thesis saw the partial development of an interface that allows control of, and
communication with, electronic devices through a WWW based front-end. It uses a
number of well established protocols and architectures to guarantee compatibility and
widespread use. It also incorporates emerging technologies and concepts to produce a
powerful, innovative product that promises to be ideal for the future globally-

connected world.

CRATENNAT

1 dostt. KNow how . heppenied, but Ehee
an applet. in the topatey and. some guyg
1 Nowway Keeps burning my toast”

FIGURE 17: The Future? (PC Magazine, 7 January 1997. Page 392)

52

ICS

t Schemat

ircui

Cc

N HOS SLNANNHOS\SISAHIND I
Jo_waug L661-P0-0C wieq

W
uoIsIARY squInN ong

sindu ZEOLHS PU 1YL 19M0g

AL

m 0z 91N (450 0T ¥IN 0z €I rizin oztn b

g nop any ey mepas

0z 6N 878N 8TLn 0z9n 0z sn rien

Bl wl wl wl ol wl

LI
2

53

vien vlzn 09%s 10 i @i yin o
81
m [Tl WL ol wl *
[sit ¥ir
3O
£r-6AT 1r-8AT
9zodl 9701
AV) //r v
—_ (4
N N\ v_l¢
o] ; N ¢
Ne——— ¢ N\ A
] 5 N v § prog g
N SV
oI N_—ov] ¢ =
N N\ 2 B4 2
vod_ o N8V | ATI+ T
21304 Ne———— I N6V | | !
211 0d_| 7 N\ Y lu
vl Ne——— N1V |
¢ md ©0d_] N YV 1y . 4ol _|
= N v sdis ; ' 910=— -
R Rt N_Tv| 5 e il (RN o1 | ¥ 01T~ 51424
21,
o FEAV_/N___ 1 Y1 i 5 _ I35} le
A o HI»«“ 00d__ g1 — s € H
R o i Nt = : = 7
&) [t 9 —2 “{ It —e . x wo | oz
S00HIL @ P @ 1z I So=— €10
od__/] ST
2 — —
¢ 01/ — —
2/ — 5 — s
Ll / — % — 9%z 5
orr Tr Eﬂdﬂ rr 0 peag] AL
1ASTH-AAT =
164
OA
it
v € _ z 1

APPENDIX A

54

[
: HOS WVAHOS\SISTHIND G
Jo s | L661-1°0-0C e
(2%
oISy JoqumN s
51235139y DIN PU¥ WVHA
amL
TEOHHL
@]
P
YPTOHIPL
ot
o1 u‘%r_‘
” T AL vz g “
= €AT £VT - $OOH¥L
N_oa_s oaAv_/]
5 TAT [3%4 =
| A vz v_/|
vad 6 vV 9 <
N\ PAL /]
N_£d €Al av__/ LDDOSWINIS
N_2d Al av__/ am TN
N\ 1AL i §Vo eIV)
G a SVH o—= CSVd_]
dSVD o—g—
da
T 67
o —5—
3 M|
L0a 5 =
A —g 5
O —7 G
LEOHIL s % I v
I ©0a g .
L) 10a -
\ 5 3 <_980 0da G L0ld
N e T 2010 i
N__oav 9 T oa_/] oIV,
— N—cav e 10 9 visa A 24 v
N_rav ¢ mw Y —va A » v
N__tav « a A n% Y
N—av <o) a T v v
{Ie-olav av 10 a a sV 37
o © oa < T v
a a v
9N v
(4 a%
v N
ov v
CIrold > eir
v € z !

: HOS TANNAHITHOS\SISHHIND I 0STVIL
Jo s | L661-90-0C U ALTOIRA _—
_) —K Ao
v or N htY

UOISIASY _ JoqunN g 6 i O 1T

1) 0)) JouL T0STVHL
[1013u0D) JPUIIRY o &
niL m:_ ‘_o A00E
S AN
v N 9y
9 L4

an €1
s iy
- N\
61y

= _ 1
oA
AR[=(&I22)8E toe e b = 3 3
== | OruROX=Y]
q0LT AOLT ﬁ =] ﬂOMlmm ol £2%%
s1ga 1 m wm S8 &
N
ol L—— xws¥o m siav
O T8 S e av
O XI/AXL @ riav [av
(53 c1av
2 s] 104 6 av
801$93d 100 aqy ez av.
i 1 nav <
o- @ -IXy — o v
3 3 XL 01av —== 5
O i i L av =
] _ o L r 7 sav Iy SRl
a +XA 8av
2 l I i i g L wav e
aL -OXL -a A
© £t v B a0 sav .
O== 18 2 av av
o2& BL L — o T av
o 4 L= SL_iql +OXI | XL i
3 LT 91 1 s | T v q
av
NI o X | +pOXL Wav — o
L av : (Tolav >
L o XA av
r 5| X oav XV
3 o
AT+ 3
— LE = $0HYL
z® W _w o oz),
>5 522z m_ _ _d =l
(=} (@]
525 S BEEREREE
L] AR
CEEREEC=ES
- _va_ |
ova
>
AMd
| M- (e
sV p—— ——— L UMW)
L @RN)
o f—— TR]
- @
= oV
S)
r
1
v W ¢ z

N
7\

55

v € | T
4
| 1

56

UERY SOOOIN___ HOS HALNEHOS\SISTHID I
Jo s | L661-90-0C weq TEOHIL
W
e b 3 28 ova
Kounp Lyng
L
YLEOHTL
s1slav A =7
f g0 Py <_ud
/]
L osav >— Ny 1R Wi Sna A
N_riav 9 > via |/
R—fav—— S <a Ha T
LY, O ¥a -
faa') N_ziav Z 121d
_ N TV £ £ T T
== olav Nw u a T
. - 510 "oy 1 1a d
O0A v _o6d |
150 SV ® o o
80 gz 2l <in
am
£} MM 30A . WLEOHNL
N0 4
w« IV 0 1L
Tive N\ :
oAy Tive NV ® “
o o1ve N oav O M —r—5q A
e« v Ve SLEOHYL) N—cav Mw sa T /
av_st mm w «m 1 7 = N o) Mm__ L_d /
NV] z ve 20 P I REY D @ -
N €« SV N_1av 10 1a d
av 24 Vil R @ ® o /
NI i w vl e oav <
\ 6V a v e e O <a ___/ rin
od ov O ! £1avV__/]
sav T Ve Ve T va =
80 v © v/
v 2] wa M.“ "«|\\ . PLEOHIL
=— 1D a d /]
Vel ® o sav_/IN_sav b A_uw 3
- Ve 5 AV N__6aV. a No 6a__/
| e T o S
180 —57 N_ZlaV a_/
WO —57 N_£1aV d =
am L _tiav G ST
o 30A av a
@IN_) L
av
nv Ve SLEDHYL _
oy = a1 =
>0 6V 40 (> i
¥ N 8V Lk L= wed]
NZav et | 53 £y YE] Y P N G G
Nl b4/ v vaor 1 ® N e \ v a__/]
35A Nsav ot 3 Vel vaer | X d < & d 7
NPV MM JAd Vel Ve 0 ¥ —o — \N av < /
d v 1 D £a d qv a /]
TN N & wa v o Ve » IOV \ hy. i mw Ha /]
N 1a v o 2D 1 Qv “N av e R G A
= > av d a
av o o~ orve v ® o« av o L—w O R))
oty 7 = a < 81 a)
¢ n |
— 50
T X
30A 601 TEOHHL
ey e
T Cmm
R go1n
€ z _ i

iagrams

D

iming

T

APPENDIX B

UBAY SU[OUDIN ‘Ag] UMBIC

HOS INVAA-I\HOS\SISHHIN O oIt

Jo_was | L661-190-0T arq
[v
UOISADY SqENN oz
wieaderq Surwiy, pray WVIA
AL
Suoz =
BorL=

unu SuQ = YpIL, ‘dwn Ploy TEP peRY

QJE)S M LIASU] <= SUS] - =
SeI] - [PSeI] - 9RO X G| =
un Sug | = SpAL ‘du dnyas eiep pray

3O =
Susz =
ase] - B =

unu §ug = 98I SO/ WOI AWy SSIIIE TILP PEIY

O

SUST =

PPIL - 9AL X G0 - [PSBIL + JBIL =
uI SUQZ = 998 ‘U SSIIE BIEP Pray

3O =
Posn AV HQ 10 SUOL =
Unu SUGG = ORI ‘Y/ WO AN SSIIIE TIEP PEAY

‘spuawambay

xew SUOZ = JOL ‘A¢[op Jo-wn Wy Id
Xew SUQT = PSIL ‘dwy A2[op 2qons peay
Xew SUQY = PPAL ‘Own A2[op peay

Xew SuQZ = PSed). ‘awl A¥[p SV I/

Xew u(= 9se ‘own dnjos SSIppe uwnjo)
Xew SUQE = ZPSEL], ‘7 AW ALOp SVH/
Xew SUQZ = [PSEIL ‘[2WR P[P SVI/
Xew SuQZ = PEL ‘oW Ae[op SSAIPPY

SUQS = 940, ‘o 9[oAd sng

m
_
|
[
v |
|
[
,
| |
a
oL < SPIL e
N
arva > oa-La
_M y A
TpIL o
@/
Pt K T
SVO/
|0
PROL
/ S/
TpoiL <>
AI'TYANI X NINNTOD vn MO¥ OVEEVA [|
m PeL m PRL

BR0L a

57

HOSAMWVAA-INHOS\SISHHI-O (Y
Jo_wus | L661-P0-0T aned
a4
uoIstay JaquinN g
weadelq Suwiy, AL WVHA
opLL

unu'SUG | = YPL ‘wn ploy Brvq

3O
Sup =
TPPML - 9SBL + PEL =
unu §uQ = SpL ‘own dnjes wreq

20

Suos =

9SB] - UL - PSEIL + OAOL =
unu SuOz = Sed] “‘Ppw aspnd Sy/

30

Susg =

IPSBLL - ZPSEIL, + ML X §'1 =
unu SuQL = S ‘Gpmw 3spd Syy/

s SuQ = YpML ‘awn POy BIEp M

Xew §uOZ = PPML ‘awmn Ae[op B1Ep A
ww guQ = Som I ‘own dnjos puetwoo aj
XeW SUQZ = ZPSML, ‘Z A®[op 9q0ns M
Xew SuQz = [PSML ‘[A2[op 2q0xs M
Xew §uQz = PSed, ‘awn Aejop SYO/

Xew Su(= 9se], ‘own dnjos ssaIppe uwnjo)
Xew SUOE = ZPSELL ‘Z dwn A2op SVY/

Xew SUQZ = [PSeIL. ‘1 dwn A2[op SV Y/

XeW SUQZ = P ‘dWn AB[Op SSAIPPY

SuQ§ =940 ‘awn 9240 sng

ATV ANI

WL /—Ts.ﬁ

arva 0aLa
upmL v p
% "
wsL S TP
/ - ,/ SV
e >
ﬁ % -
TPl Se] _%
NANTOO VA‘ MY OVA-EVY
<7 L

ps)

58

g

uoisoy

quiny

weadelq Sunuly, YUy IWVHA SVH/-40599-SVD/

QIIS JIBM B UISU] <= SUGY =
TPSeI] - [PSEIL+9KOL X §'] =
un SuQ, SeL ‘ppis dspd S/

3O
SusL =
TPSEOL + [PSEIL - HKOL X §'[=

Ui SUQE = JYO, ‘YSaLa1 10§ Swn Ploy SV I/

3O
(zgoLys woxg) suoT =
unu gug = 4591, ‘ouin dnjas ysayal S/

:sjuawaImbay

XeW SUOZ = ZPSEI], ‘7 Awn AB[op SV O/
Xew SUOZ = [PSEdL ‘[dwm A2[op SYO/
Xew QUQE = ZPSEL], ‘Z dwn ABop SVY/
XeWw SUOZ = [PSBAL ‘[AWl A2[op SV Y/

SuQS =940, ‘owm 3[40 sng

s

TpselL

SeI]

=L TPswL

SV

A0

59

HOS (IO LAHOS\SISTHIND Ol
Jo Iy | L661-P0-0T eq

A SUIOUOIN -

oty oquinN ong

wrea3ulq Suruny, peay 1935139y DIN

DL

00,

SUQL + A0 w U=
PEL - PPAL + JBPIL = —K arvA
SUQE - (Z + U) , 9K0 = 208, ‘Qwn SSI00L BIEP PEY 00O
YpaL SUpa],

30
Supz =

(AL +APYORL + YOBL + PPAL) - SAOL X = Arva 0a-La
unu Sug | = spa, ‘dnios eep peas JaisiFoy APYOUL

p () L

SuoL "SI =
ZpiL = N\ Lvav
unu SuQ = ypJ, ‘ploy BIEp peas Jaisiday

SismL
%0 £

A0 XU+ 9¢] = /
dL +ApYoRL + YoBL = / dov/
Su 0z - (S'1 +u) X 9401 = 9Bp1], ‘2qONS PEI WO WL SSIVY

N0 oL ss1],
SITEIS BM € YL YBIY YOO[0 210J2q SUGT = \\ \

dL - oL - PPIL - SAOLX T = N
unw Sup| = SIM, ‘own dngas e |\
0
" SUQZ = PeL - PPAL u_m° / /
uiw QU | = SIs1] ‘dnjas peal 03 1993S 1ASITY N 980/
‘sjuawaImbay %
SUQL - §1 = ZPLL ‘91e)S 1) BIEP O} peay
Xews SUGS = APYOUL, ‘PI[EA BIEP 03 MO] JOV/ QAITVANI X arvaA Oy:evd
Xew SUOE + 940} X U = YOB], ‘MO| JOV/ O} peay

xew Su[s = dJ ‘own uoneSedoxd YOv/ %
Xew SuQp = ppiL ‘dwn Aejop peay

Xew SUGZ = S, ‘oum Ae[ep §O/ /
Xew SUOZ = e, ‘awn Ae[ap SS2IPPY \\|/|\\||/|\‘ \ / \ ¥
SUQg =940, ‘awm a[okd sng /|\

60

TRy SUOUOIN ‘AL UNEKT

Jo WS |

HOS UM OU-L\HOS\SISTHL\-O -t
L661-R0-0T el

uoISIARY

RqunN s

weaelq Suru g, LAY 19SIBRY DIN

AL

Sugs =
APL + 1L+ ZPML - §'0 X 9K =

SugE=
dL+7pML-§'0 XML =
I SUTZ = YPL ‘PIOY BIEp dum JaisiSy

10

SuLS =

OL-ZYL-dL-ZpML +90LX ST =
unu SUOZ = SpM L ‘dnias eiep apum saisiSoy

MO

431y 300[0 210§0q SUG| =

91 4 $°0-dL+BL+ [PML =
ur Sup| = SM, ‘own dnas e

O
SUSZ = [PML+PBL- §'0 X 9L =
Ul QUG = SMSIL ‘dnjas ajum 0} 109J9s 1AISITaY

:sjuawarmbay

Sugz =0 ‘Aejop ndino yorey

Xew SuQg = ZIy], ‘Aejop uoneSedoid apeis-uy,
Xew Suge = YO, ‘Aefop uoneSedoid oo yoyey
xew Suy | =1d] ‘Aejop uoneSedoid Jouaauy
xew gug¢ = dy, “Aejop uoneSedoid 1 pue YO
XeW SUOE + 9A0] X U = Yo, ‘Ae[ap }9B/ 0} 2GONS AU
XeU SUGE = PpM]L ‘awn Av[op Bep LM

Xew SUQZ = ZPM ‘T dwn A2[op 2qons AL
Xew SUOT = [PML ‘T W Ae[op 9q0IS LM
Xew Sugz = I, ‘awn Ae[op SO/

Xew SuQZ = pe, ‘dwn Ae[op ssasppy

SuQg = 94o] ‘owm 3[0Ad sng

SPL

YpL
daIvA

7N

oav-Lav

HLVISTRIL % AI'TVANI v
S
’ zqL

NRL+ L

OL + 7L !

arIvA

b L

oa-La

AoV/

SMSI],

PML

IPnL

98

anva X

arva

OV EVE

61

TML+-ZIYL - PL- IML- AL X ¢ =SpL
Ut Sugp = spY. ‘own dnias eieq

‘sjuawaImbay

Xew Suo¢ = ZIY L Z Y31y 0) d)qeua ;nding
xew Sug| = pL ‘Aejop uonededoiq

XBW SUQZ = TML ‘7 AW ABjo(T 2q0NS M
Xew SUOZ = ML ‘[2un], Ae[o 2GS A
Xew §ugz = S, ‘awn Ae[op SO/

Xew SUQT = PeL ‘oWl A2[op SSAUPPY

SuQg = 940 ‘owm 3[0Kd sng

N HOS QUOFINHOS\SISTHIND]
Jo_was | L661-P0-0C e
144
oISy soquinN ong
weSei(Sunuiy, pedy OI JIN
apiL
0
Sugy =
ZI4L +OL>YPL
unw §uQ = yp. ‘own pioy eeq
o=
Suzo1 =

24l + 01

arva

AI'TVANI

st-oa

YPL

SPL

1 7L +0L

wmL

oova/

M

®L

80/

AI'TvA

ov-S1v

/o

62

UBAY SUIOYOIN A UMEI(T |

.. |

Jowaus |

HOS AMOIL\HOS\SISHH.INO
L661-P0-0T

I

@eq

UOISASY BqunN

zs

weaderq Surmiy, LA OI DIN

AL

0 =

SUoET =
0L - [PAL-TPAL+ ML X § =SPL
unu Suzz = SpL, ‘own dnjes ereq

‘sjuawarmbay

Xew SuQ¢ = o, ‘dun] Aejoq ndinQ

Xew Suz¢ = z4oJ, ‘awn 71y o1inding

Xew SuQg = 20wt d[qeuad indinQ e
Xew SUEZ = ZPJ, ‘7 2wn A2[p 03OVA

Xew QUET = [PL ‘[2wn A2[op 0NOVA

Xew SuQZ = ZPL ‘7 dwn Aejop peay

Xew SuQp = [PL ‘| own Aejop peay

Xew SUZ = ZPAL ‘Z WL, K22 2qonS pray
Xew SUOZ = [PAL ‘1 WL, Ae[oQ 290§ peay
Xew Sugz = SO ‘own Ae[op S/

Xew SuQz = pe ‘own Ae[op ssaIppy

SuQg =949 ‘o 99Kd sng

HOLV'1

darva

S1-oa

WL L
_\ / oxovar

I L

[
L
[
/ s
L

arnva ov-S1V

ArIvANI VA

63

PCB Layout

APPENDIX C

1L 3X00SWU I

61|

92201

iy

€2y

220 0000000

3u0t

A3duN.

n]

o

&)

r

QOO N~

4uot
0€l

bLEJHYL
oIn
o00000000O

02201

<00
S[me

4uot

9€3

e

N
>
T
S
N
BN

%

1
€3

o

zin
o000 000

® Hleeeoecceco0c0cc00ccceccocooocoe
3uot U0 1
@ 823 @kﬂu 201 o1
M om ° S€D €€3
L4 ° —— [Tle uf e
e o ° 523 ° e o °
e o ° u[e [} e o °
e o ° ° ° o (o o e =m °
L o ° ° oz |6 o X |0 o °
e e e ol . | o|ssle e Gile e |e
e o L] £ N N A
V915 e o ig|e ° e o X (o ofic|e
8n e o Pl ° oy | ° e o e oy |e
° o ° o “ |e@ ° e o e o °
L4 L4 ° ° ° e o e o °
oo ° ° ° — S
o e ° ° °
e e °
LAy
EleRd 4u01 Juot
0000000000 & [eely [ee]iy
o —] o
01 €LEHVL L e = ¢ =
529 sn ° e o e o
meeoeooocoooo0 ° e o e o
228 ol (o oy |0 o,
5% ofi_|e o z-|e o zc
veu o %0 ofX"|e |
e0o00o0cc0co0o0e o> le e |le e+
ee00cec0o0o0ccooce ° e o e o
L L ° e o o o
9.8 L4 ° e o e o
9
wot| ®@® eoe 2 .
so| @ @ e i
LR z06€8d0 ®e <13 4901 4u0t
OE [N n o0 @mﬁ m_ewu
ZHUO0Z -If\l. .II.\I.
° X LX)
Y e X oo dzz @ o o e
wmo oo) _M_u ol |o o |o
S |e 0000000000000 _m_.mmmommo MR
° XXX YY) e ana u u; u
Iu o 2901 _Juol S [3022Z |} 2 o e o °
@e ? i[ee0e eecococoo L] =
0z3___8d 801693d
see 1@, 1w N_N
o mmiﬂmi ©c0cccoe =
61y - 284
(A X X N N N B | m:t&esma
e 9 aitiia,
4+ o [X XXX XX Re9; 312494
s18a 9n1d ad

031099

])

037

3]
|

124

64

APPENDIX D : Bill of Materials

Quantity Reference Type Description

23 C7,C8, Cl5 - C20, C22 - C36 Cap 10nF, 100V, Mon. Cer.

2 Cl1,Cl12 Cap 22pF, 100V, Mon. Cer

2 Cl13,Cl14 Cap 10uF, 63V, Electro.

2 FB1, FB2 Ind Axial Ferrite Bead

1 J1 Conn DB15 socket, R/A mount
1 J5 Conn 2 Pin Header

1 J7 Conn PC Plug, R/A mount

1 J8 Conn 5 Pin Header

1 19 Conn IDC10 Boxed Header

1 J10 Conn IDC14 Boxed Header

3 J11,7J12,713 Conn IDC26 PCB Transition

2 J14,]15 Conn IDC20 PCB Transition

1 J19 Conn 30pin SIMM Socket, Vert.
1 L1 LED Yellow, 3mm

1 L3 LED Green, 3mm

2 LS5, L6 LED Red, 3mm

2 R1,R2 Res 270R, 5%

4 R3,R4,R5,R6 Res 39R, 5%

2 R14,R16 Res 300R, 5%

1 R20 Res 1K, 5%

1 R21 Res 2K2, 5%

4 R19, R22, R23, R24 Res 4K7, 5%

1 T1 Trans PE64108 Pulse Transformer
1 Ul IC DP83902A NIC, 84pin PLCC
1 U2 IC 74ALS02

1 U3 IC 74HCO08

1 U4 IC 74HCO04

2 Us, U6 IC 74HC373

2 U7, U8 IC 6164 8K x 8 SRAM

1 ul10 IC 74HC32

1 Ull IC 74HC244

1 Ul2 IC 74HC74

5 U9, U13, Ul4, U15,U16 I€ 74HC374

2 X1 XTAL 20.000000MHz

Miscellaneous Parts

84pin PLCC socket

14pin DIP socket

20pin DIP socket

28pin DIP socket

IMB 70nS DRAM SIMM
IDC26 socket

IDC20 socket

IDC20 Boxed header
IDC26 Boxed header

1m x 26way IDC cable

—_L NN W= N oo L —

65

APPENDIX E : Software Hierarchy

The source code developed for this project may be found on the accompanying 3 72
inch floppy disk included at the back of this thesis. The file structure follows the

hierarchy shown below.

makefile
sr.cmd
sys
startup
process
net
includeq

A4 A VL A4 VL
arp.h makefile makefile makefile makefile
bufpool.h arp.c ipproc.c main.c blk.c
dp83902a.h ethernet.c netstart.c vects.c cmon.c
ethernet.h ip.c slowtime.c start.s mark.c
icmp.h net.c toast.c proc.c
ip.h queue.c
preass.h syscall.c
kernel.h time.c
mark.h inline.s
mem. h switcher.s
montraps.h

net.h
netif.h
network.h
ports.h
proc.h
queue.h
sem.h
time.h

66

[1]

[2]

[3]

[4]

(8]

[9]

REFERENCES

Apple Computer, Inc. 1997 MessagePad 2000 Datasheet [Online]. Available
http://www.newton.apple.com/product_info/devices/MPZOOO/MPZOOOds.html

Benham, D. 1991 10Base-T Solutions: Network Interface Adapter, System
Brief 119 [Online]. Available http://www.national.com/ms/SB/SB-119.pdf

Casio Computer Co., Ltd., Press Release [Online]. Available www.casiohpc.

com/low/pressrelease.html

Comer, D. 1984 Operating System Design: The XINU Approach, Prentice
Hall, New Jersey.

Comer, D. 1987 Operating System Design — Volume II: Internetworking with
XINU, Prentice Hall, New Jersey.

Comer, D.E. & Stevens, D.L. 1994 Internetworking with TCP/IP, vol. 2,

Prentice Hall, New Jersey.

Fielding, R., UC Irvine, Gettys, J., Mogul, J., DEC, Frystyk, H. Berners-Lee,
T. & MIT/LCS 1997 Hypertext Transfer Protocol, RFC: 2068 [Online].
Available http://andrew2.andrew.cmu.edu/rfc/rfc2069.html

Hitachi America Ltd. 1996 Hitachi Single-Chip RISC Microcomputer SH7032
and SH7034 Hardware Manual [Online]. Available http://www.halsp

‘hitachi.com/tech_prod/h_micron/1_sh/1_sh1/h1101/pdf/h1101.pdf

Hitachi America Ltd. 1997 SH-1 Low-Cost Evaluation Board US7032EVBI
User’s Manual, Hitachi America Ltd.

67

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Hitachi America Ltd. 1996 SuperH RISC Engine SH-1/SH-2 Programming
Manual [Online]. Available http://www.halsp.hitachi.com/tech_prod
/h_micon/1_sh/2_sh2/h12p0/pdf/h12p0.pdf

Horowitz, P. & Hill, W. 1993 The Art of Electronics, Cambridge University
Press, New York.

Information Sciences Institute 1981 Internet Protocol, RFC: 791 [Online].
Available http://andrew2.andrew.cmu.edu/rfc/rfc791.html

Information Sciences Institute 1981 Transmission Control Protocol, RFC: 793
[Online]. Available http://andrew2.andrew.cmu.edu/rfc/rfc793.html

Intel Corporation 1991 /M Dynamic RAM with Fast Page Mode Datasheet,

Intel Corporation.

National Semiconductor Corporation 1993 Writing Drivers for the DP8390
NIC Family of Ethernet Controllers, Application Note 874 [Online]. Available
http://www.national.com/an/AN/AN-874.pdf

National Semiconductor Corporation 1995 DP83902A4 ST-NIC Serial Network
Interface Controller for Twisted Pair [Online]. Available http:/www.
national.com/ds/DP/DP/DP83902A.pdf

Newsbytes News Network 1997 Embedded Conference — Java Perks Coffee

Over Web [Online]. Available newsgroup: biz.clarinet.

O’Connell, M 1995 Java: The Inside Story [Online]. Available http://www.

sun.com/sunworldonline/swol-07-1995/swol-07-java.html

Pacific Softworks Inc. 1997 Managing Network Devices with Web Browsers
[Online]. Available http://www.pacificsw.com/Background.html

68

[20]

[21]

[22]

[23]

[24]

[27]

[29]

QNX Operating Systems Ltd. 1996 ONX Operating System: System

Architecture, Ontario.

Runkel, M. A. 1997 Ethernet Frequently Asked Questions (FAQ) [Online].
Auvailable http://www.ots.utexas.edu/ethernet/enet-fags/ethernet-faq

Schofield, M.J. 1996 Controller Area Network — Background Information

[Online]. Available http://www.can-cia.de/caninfo.html

SEEQ Technology Inc, 1992 80234 Manchester Code Converter Datasheet,
SEEQ Technology Inc.

Socolofsky, T., Kale, C. & Spider Systems Ltd. 1991 4 TCP/IP Tutorial,
RFC: 1180 [Online]. Available http://andrew2.andrew.cmu.edu/rfc
/rfc1180.html

Stevens, W.R. 1990 UNILX Network Programming, Prentice-Hall, New Jersey.

Valentino, R. 1997 comp.sys.ibm.pc.hardware.* Frequently Asked Questions

(FAQ) Part 4/5 [Online]. Available http:/zebra.herston.uq.edu.au/tec/pcfaq
/part4.htm

Von Voros, J. 1993 Architectural Choices for Network Performance,

Application Note 873 [Online]. Available http://www.national.com/an/AN
/AN-873.pdf

W3 Consortium 1997 WWW Project History [Online] Available www.
pku.edu.cn\on_line\w3htmI\History.html

Wakeman, L. 1993 The Design and Operation of a Low Cost, 8-Bit PC-XT

Compatible Ethernet Adapter Using the DP83902, Application Note 942
[Online]. Available http://www.national.com/an/AN/AN-942 pdf

69

[30] Wilson, B. 1994 Loopback Diagnostics Using the DP8390/901/902/905,

Application Note 937 [Online]. Available http://www.national.com/an/AN
/AN-937.pdf

70

